• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Medale Chemii za nanolumionofory, geny bakterii i katalizatory

    02.12.2011. 08:04
    opublikowane przez: Redakcja Naukowy.pl

    Świecące nanocząsteczki, nietypowe geny bakterii i katalizatory - to tematy prac zwycięzców pierwszej edycji konkursu o Medale Chemii, przyznawanych za najlepsze prace licencjackie i inżynierskie przez Instytut Chemii Fizycznej PAN w Warszawie. 1 grudnia w siedzibie instytutu wręczono nagrody. Konkurs ma na celu wyróżnienie szczególnie ciekawych prac polskich studentów chemii.

    ŚWIECĄCY NANOCZĄSTECZKI

    Złoty Medal Chemii i 10 tys. zł. otrzymał Marcin Runowski, student Wydziału Chemii Uniwersytetu Adama Mickiewicza w Poznaniu. Po trwających trzy lata pracach, udało mu się otrzymać luminofory, czyli świecące związki, które mają rozmiary nanometrów i właściwości magnetyczne.

    "Dopiero dwa, trzy lata temu ukazały się pierwsze prace na temat takich związków, jednak one były nadal niedoskonałe. Moje cząsteczki są pokryte powłoką ochronną. Takie nanoluminofory można zastosować w medycynie. Np. wprowadzamy je do organizmu i możemy zrobić obrazowanie fluorescencyjne, a dzięki polu magnetycznemu możemy łatwo nimi operować, czyli np. usunąć je później z organizmu. Wiele znaczników może zostać wprowadzonych, ale później trudno je usunąć, bywają też toksyczne. Nasze cząsteczki, oprócz tego, że można je usunąć zwykłym magnesem, nie są toksyczne, dzięki powłoce ochronnej" - tłumaczył Runowski po uroczystości rozdania medali.

    Zapowiedział, że zamierza kontynuować badania. Ma nadzieję, że w połowie grudnia jego wydział rozpocznie współpracę ze specjalistami z wrocławskiego Instytutu Immunologii i Terapii Doświadczalnej, którzy sprawdzą działanie nanoluminoforów na hodowlach tkankowych.

    Runowski dodał, że do podjęcia badań nad niezwykłymi cząsteczkami zachęcił go dr Tomasz Grzyb, który zajmuje się pierwiastkami ziem rzadkich z grupy lantanowców. Właśnie te pierwiastki mogą być, jak wyjaśnił chemik, składnikami cząsteczek luminoforów. "On wprowadził mnie w tematykę luminoforów i we wszystkie techniki. On zaproponował, żeby poszukiwać wśród luminoforów związków o właściwościach magnetycznych i budowie typu +core-shell+, czyli mających powłokę ochronną. Na początku pomagał mi to wszystko interpretować, a ja wykonywałem syntezę. Później, kiedy się we wszystko wdrożyłem, sam zacząłem wszystko opracowywać i podsuwać nowe pomysły" - opowiadał Runowski.

    Jak dodał, powstałe w wyniku prac cząsteczki to głównie różne związki bazujące na fluorkach. "Są to fluorki lantanowców, często z jakimiś domieszkami, np. fluorek ceru, który ma bardzo interesujące właściwości luminescencyjne. Ciekawy efekt możemy osiągnąć, dodając do niego niewielką ilość jonów innych lantanowców - np. europ, który świeci na czerwono czy terb, który świeci na zielono. Jako układ magnetyczny są tam nanocząstki magnetytu Fe3O4, a jako powłoki używaliśmy głównie dwutlenku krzemu SiO2. Oczywiście badaliśmy całą masę innych układów, ale ten jest najbardziej efektywny" - wyjaśnił chemik.

    BAKTERIE ZE SPITZBERGENU - ŻYWIĄ SIĘ MYDŁEM, A PRODUKUJĄ PROSZEK DO PRANIA

    Srebrny Medal i 5 tys. zł. odebrał Robert Lasek z Wydziału Biologii Uniwersytetu Warszawskiego. Bada on nietypowe geny bakterii zimnolubnych, przywiezionych przez polskich polarników ze Spitzbergenu. Udało mu się odkryć w ich komórkach takie geny, które pozwolą zmodyfikować bakterie i zmienić je w żywe fabryki przydatnych enzymów. "Takie bakterie można wykorzystać np. do wytwarzania proszków do prania. Bakterie te w niskich temperaturach produkują enzymy, które działają w niskich temperaturach. A takie enzymy są wykorzystywane właśnie jako środki czyszczące, bo rozpuszczają tłuszcze albo węglowodany" - tłumaczył w rozmowie z PAP Lasek.

    Jak wyjaśnił, celem naukowców jest znalezienie takich genów, które po odpowiedniej manipulacji pozwoliłyby sterować procesem produkcji enzymów przez bakterie, hodowane na pożywkach. Po to badają oni pobrane z nich cząsteczki DNA, tzw. plazmidy.

    "W jednym z takich plazmidów udało się znaleźć całkiem ciekawe moduły genetyczne, które nie zostały dotychczas opisane w literaturze. Ja na podstawie swoich analiz zaproponowałem modele regulacyjne tych modułów, które teraz mam nadzieję sprawdzić w praktyce" - mówił Lasek.

    "Udało mi się znaleźć w tym plazmidzie naturalny układ genów, kodujących enzymy, które rozkładają związek o nazwie dodecylosiarczan sodu, w skrócie SDS. Ten związek występuje we wszystkich produktach myjących. To jest coś co sprawia, że mydło się pieni. Te bakterie zdolne są do wzrostu na tej substancji. Po prostu ją zjadają. Jeśli dodamy ten związek do pożywki, odpowiednie geny bakterii są włączane i mogą zacząć go rozkładać. Chcemy użyć tego elementu, żeby nie włączać genu kodującego enzym rozkładający SDS, ale żeby włączać gen innego białka, które nas interesuje" - dodał.

    Podkreślił ponadto, że dokładne poznanie genetycznych mechanizmów, regulujących wydzielanie enzymów przez bakterie, to przede wszystkim szansa na lepsze zrozumienie procesów zachodzących we wszystkich żywych organizmach, również ludzkich, ponieważ jednym z najtrudniejszych problemów, z jakimi mierzą się współcześni biolodzy jest dokładne poznanie mechanizmu ekspresji genów. Innymi słowy naukowcy poszukują odpowiedzi na pytanie co sprawia, że komórka zaczyna wytwarzać białko, kodowane przez konkretny gen.

    "Sieci regulacyjne mogą być zupełnym novum. Wszystkie organizmy żywe działają w ten sam sposób. Wszystkie mechanizmy regulacyjne są podobne, bo całe życie jest oparte na DNA. Badania podstawowe, nawet na bakteriach, mają ogromne znaczenie dla naszego zrozumienia tych procesów. Rozumiejąc je, możemy też dowiedzieć się co może pójść nie tak, a zaburzenia w procesach regulacyjnych mogą np. przekładać się na choroby u ludzi" - podkreślił Lasek.

    SYNTEZA AKTYWNA I TRWAŁA ZARAZEM

    Celina Wierzbicka, zdobywczyni Brązowego Medalu Chemii i 2,5 tys. zł, studiuje na Politechnice Wrocławskiej, a badania prowadzi w prywatnej firmie chemicznej. Testuje właściwości składników katalizatorów, czyli takich substancji, które pomagają wywołać reakcję chemiczną między dwiema substancjami, ale same nie biorą w niej udziału. Badała wpływ ligandów, czyli związków będących częściami składowymi katalizatorów na ich właściwości.

    "Firma zajmuje się badaniami nad nowymi katalizatorami metatezy olefin. Ja badałam wpływ tych ligandów na ich aktywność i stabilność. Od aktywności katalizatora zależy jak dużo substratów przereaguje w pożądane produkty. Natomiast stabilność katalizatora to miara tego, jaka jego część rozpada się z czasem" - powiedziała PAP Wierzbicka.

    Jak wyjaśniła, chemikom zależy na tym, aby katalizatory były jednocześnie trwałe i aktywne. Jej badania mogą pomóc produkować właśnie takie związki. "Wykazałam jaki wpływ ma dany ligand na aktywność i stabilność katalizatora. Teraz ci, którzy zajmują się syntezą katalizatorów wiedzą jak modyfikować ligandy, aby otrzymać nowe katalizatory, będące jeszcze bardziej aktywnymi w reakcjach metatezy i bardziej stabilne" - podkreśliła.

    Teraz chemiczka chce zająć się badaniem katalizatorów umożliwiających reakcje syntezy przebiegające w wodzie. "To szczególnie przydatne dla przemysłu farmaceutycznego" - tłumaczyła.

    Poza zdobywcami medali, z grona pozostałych 12 finalistów czworo otrzymało po 1000 zł. Wszyscy finaliści uzyskali możliwość odbycia stażu naukowego i bezpłatnego realizowania badań w laboratoriach IChF PAN. Badania te mogą stać się podstawą pracy magisterskiej lub doktorskiej. Większość finalistów konkursu planuje kontynuować studia i uzyskać najpierw stopień magistra, a następnie doktora. Większość już złożyła lub przygotowuje wnioski o diamentowy grant, pozwalający studentom po licencjacie sfinansować własne badania. Zgodnie z nowymi przepisami, osoby realizujące taki grant mogą na podstawie wyników swoich badań ubiegać się o doktorat bezpośrednio po licencjacie, czyli z pominięciem stopnia magistra.

    PAP - Nauka w Polsce, Urszula Rybicka


    Czy wiesz ĹĽe...? (beta)
    Enzymy trawienne układu pokarmowego – grupa enzymów trawiennych, należących w większości do hydrolaz (enzymów hydrolitycznych), które katalizują rozkład związków bardziej złożonych do prostszych (z udziałem wody). U wszystkich heterotrofów (organizmów cudzożywnych) procesy trawienia przebiegają podobnie. Uczestniczą w nich takie same lub bardzo podobne grupy enzymów, które wytwarzane są przez wyspecjalizowane gruczoły trawienne. Metabolity wtórne – grupa związków organicznych, które nie są bezpośrednio niezbędne do wzrostu i rozwoju organizmu. Synteza związków określanych jako metabolity wtórne jest charakterystyczna dla roślin wyższych, grzybów i bakterii. Poznano kilkadziesiąt tysięcy związków zaliczanych do metabolitów wtórnych. Szacuje się, że może istnieć około 200 000 takich związków. W przypadku niektórych związków chemicznych występujących w komórkach roślinnych, ocena czy jest on bezpośrednio niezbędny do działania organizmu jest trudna. Bakterie gnilne, bakterie dysponujące zespołem enzymów umożliwiających im rozkład białek, a więc wywołujące proces gnicia. Bakterie gnilne żyją zazwyczaj w warunkach beztlenowych; mają duży udział m.in. w rozkładzie mięsa.

    Ultramikrobakterie – bakterie, które są znacznie mniejsze od typowych komórek bakteryjnych. Ich średnica waha się w granicach 0,2–0,3 μm. Termin ten został po raz pierwszy użyty w roku 1981 w odniesieniu do występujących w morskiej wodzie ziarenkowców, których średnica była mniejsza niż 0,3 μm. Organizmy te zostały również odnalezione w glebie. Była to mieszanina gatunków zarówno Gram-dodatnich, jak i ujemnych. Wiele, jeśli nie wszystkie, z tych bakterii to uśpione formy większych komórek. Pozwalają one przetrwać w niesprzyjających warunkach środowiska. W tym stanie spoczynku komórki bakteryjne spowalniają swój metabolizm, wstrzymują wzrost i stabilizują DNA, tworząc uśpione, nierosnące komórki, które mogą pozostać żywe przez wiele lat. Takie „formy głodowe” są prawdopodobnie najbardziej typowymi ultramikrobakteriami w wodzie morskiej. Synteza organiczna – dział chemii organicznej. Zajmuje się przekształcaniem jednych związków – łatwo dostępnych handlowo, w inne – o pożądanej strukturze. Najczęściej produkt końcowy charakteryzuje się jakimiś korzystnymi właściwościami (np. jest aktywny biologicznie, elektrochemicznie, czy ma właściwości kompleksotwórcze). O syntezie organicznej można także mówić w ujęciu przemysłu chemicznego, który zajmuje się wdrażaniem opracowanej laboratoryjnie metody do produkcji wielkotonażowej. Kolejnym aspektem syntezy organicznej jest synteza asymetryczna, która prowadzi do utworzenia nowego centrum asymetrycznego w cząsteczce.

    Geny kodujące białka mechanizmów naprawy DNA człowieka: DNA komórki jest stale narażone na czynniki uszkadzające. Sprawnie działające mechanizmy naprawy DNA funkcjonują w komórkach organizmów zarówno prokariotycznych jak i eukariotycznych. Badania genomu ludzkiego pozwoliły zidentyfikować szereg genów kodujących białka biorące udział w różnorodnych mechanizmach naprawy DNA. Poznano dotąd ponad 130 genów o takiej, udowodnionej lub prawdopodobnej, funkcji. Nowe geny naprawy DNA są ciągle odkrywane dzięki badaniom porównawczym sekwencji genów człowieka i homologów tych genów u organizmów modelowych, takich jak E. coli i S. cerevisiae. Badania te mają znaczenie dla medycyny, ponieważ do tej pory zidentyfikowano już kilkanaście chorób, w których patogenezie mają udział niesprawne mechanizmy naprawy DNA. Ciałka wtrętowe (wtręty cytoplazmatyczne, ziarnistości) (inclusiones cytoplasmaticae) – skupiska różnych substancji występujących w cytoplazmie komórki. Mogą mieć charakter chorobotwórczy, przez odkładanie nierozpuszczalnych białek powodujących m.in. chorobę Alzheimera oraz schorzenia prionowe. Terminem tym określa się także substancje zapasowe bakterii w formie intruzji przede wszystkim takich substancji jak: kwas polibetahydroksymasłowy, polifosforany nieorganiczne czy też cząsteczki tłuszczów oraz polisacharydów. U bakterii siarkowych występują wtręty zawierające koloidalną zawiesinę siarki.

    Kinazy białkowe – grupa kinaz, których substratami są białka. Enzymy te przeprowadzają reakcję fosforylacji cząsteczki specyficznego dla danej kinazy białka. Fosforylacja zwykle prowadzi do zmiany konformacji cząsteczki białka i, w konsekwencji, zmiany jego aktywności, zdolności do wiązania się z innymi białkami albo przemieszczenia cząsteczki w obrębie komórki. Do 30% białek podlega regulacji na tej drodze; większość szlaków metabolicznych komórki, zwłaszcza sygnalizacyjnych, angażuje enzymy z grupy kinaz białkowych. W ludzkim genomie zidentyfikowano kilkaset genów kodujących sekwencje aminokwasowe kinaz białkowych (około 2% wszystkich genow). Funkcja kinaz białkowych podlega wielostopniowej regulacji, również angażującej kinazy i fosfatazy białkowe; fosforylacja białka kinazy może zwiększać albo zmniejszać jej aktywność. Białka aktywatorowe lub inhibitorowe przez przyłączanie się do domen regulatorowych kinaz również wpływają na ich aktywność. Niektóre kinazy posiadają domenę regulatorową, którą same mogą fosforylować (autofosforylacja albo cis-fosforylacja). Bakterioryza – zjawisko symbiozy bakterii z roślinami wyższymi. Jednym z najbardziej znanych przykładów mających duże znaczenie gospodarcze jest związek między bakteriami azotowymi z rodzaju Rhisobium a roślinami motylkowymi (np. groch, fasola, łubin, koniczyna, bób). Bakterie te żyją w brodawkach wytwarzanych przez tkankę korzenia, stąd też określa się je mianem bakterii brodawkowych. Rośliny i bakterie czerpią z tego korzyści. Bakterie wiążą azot z powietrza i redukując go do jonów amonowych dostarczają jego związki roślinie. Roślina zaopatruje bakterie w węglowodany.

    Izoenzymy (izozymy) - homologiczne enzymy w obrębie danego organizmu, które katalizują tę samą reakcję, ale różnią się nieznacznie strukturą, wartościami Km i Vmax oraz właściwościami regulacyjnymi. Izoenzymy ulegają ekspresji w różnych tkankach lub organellach w różnych stadiach rozwojowych. Są kodowane przez geny zajmujące różne loci, które zwykle powstają w wyniku duplikacji genu i dywergencji. Izoenzymy można często odróżnić od siebie na podstawie właściwości biochemicznych, takich jak ruchliwość elektroforetyczna.

    ABTOW (skrót od Automatyczny Biodetektor Toksyczności Ogólnej Wody) – zautomatyzowany biologiczny detektor zanieczyszczeń wody, działający na zasadzie śledzenia aktywności metabolicznej bakterii nitryfikacyjnych, czyli biorących udział w procesie przetwarzania związków azotowych. Urządzenie zawiera połączony szeregowo układ pomiarowy składający się z bloku przygotowawczego, bloku pomiarowego i bloku analitycznego, poprzez które kolejno przepływa badana woda.

    Biochemia zwierząt - nauka weterynaryjna zajmująca się badaniem wszelkich procesów biochemicznych (czyli z pogranicza biologii i chemii), które zachodzą w organizmach zwierzęcych. Gramicydyna D (gramicydyna) − heterogeniczna mieszanina sześciu organicznych związków chemicznych pochodzenia naturalnego, tj. trzech par gramicydyn A, B i C w stosunku odpowiednio 80%, 6% i 14%. Każdą parę stanowią dwa związki, których cząsteczki różnią się strukturalnie tylko nieznacznie. Gramicydyna jest peptydowym antybiotykiem jonoforowym produkowanym w procesie biosyntezy bakterii Bacillus brevis. Jest stosowana wyłącznie miejscowo, ze względu na wysoką toksyczność. Gramicydyna jest jednym z nielicznych peptydów kodowanych nie przez kwasy nukleinowe, lecz przez kompleksy białek enzymatycznych. Gramicydyna jest jednym z niewielu znanych jonoforów transportujących jony nie jako nośnik, lecz przez kanał jonowy, a zarazem najdokładniej poznanym jonoforem tworzącym kanał.

    Plazmid – cząsteczka pozachromosomowego DNA występująca w cytoplazmie komórki, zdolna do autonomicznej (niezależnej) replikacji. Termin "plazmid" został po raz pierwszy zaproponowany przez prof. Joshua Lederberga w 1952r. jako genetyczna nazwa wszystkich znanych (w tamtym czasie) "pozachromosowych cząstek genetycznych", a w praktyce zaczął funkcjonować dopiero 8 lat później. Plazmidy występują przede wszystkim u prokariotów, ale znane są także plazmidy występujące u eukariotów. Zazwyczaj plazmidy nie niosą genów metabolizmu podstawowego, a więc nie są komórce niezbędne do przeżycia. Mogą jednak kodować produkty potrzebne w pewnych specyficznych warunkach, na przykład geny oporności na antybiotyki lub umożliwiające rozkład i asymilację różnych związków odżywczych. Plazmidy mogą być przekazywane pomiędzy komórkami bakteryjnymi w czasie podziału komórki lub poprzez horyzontalny transfer genów np. w procesie koniugacji, transdukcji i transformacji. piRNA (ang. piwi-interacting RNA) – niekodujące cząsteczki RNA (ncRNA; ang. noncoding RNA), wykazujące aktywność małych regulatorowych RNA (srRNA; ang. small regulatory RNA), które tworzą kompleksy z białkami piwi i biorą udział w epigenetycznych oraz post-transkrypcyjnych mechanizmach wyciszania retrotranspozonów i innych elementów genetycznych, związanych z przemieszczaniem się genów w procesie transpozycji. Cząsteczki piRNA ulegają ekspresji w komórkach zwierząt, głównie w męskich komórkach płciowych, w procesie spermatogenezy. Jedną z charakterystycznych cech cząsteczek piRNA jest ich największa długość (26-31 nukleotydów) spośród znanych klas małych, niekodujących, regulatorowych RNA takich jak: siRNA (ang. small interfering RNA), tasiRNA (ang. trans-acting small interfering RNA), rasiRNA (ang. repeat-associated small interfering RNA), tncRNA (ang. tiny noncoding RNA), miRNA (mikroRNA) oraz saRNA (ang. small activating RNA). Szlak syntezy i dojrzewania piRNA jest słabo poznany (stan wiedzy z roku 2012). Wykazano, że różni się on istotnie od biosyntezy cząsteczek miRNA i siRNA, prezentując jednak wiele podobieństw do szlaku syntezy małych interferujących czynników trans-rasiRNA, które mogą stanowić podklasę piRNA.

    Dodano: 02.12.2011. 08:04  


    Najnowsze