• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Naukowcy: oksygenaza hemowa może mieć znaczenie w różnicowaniu komórek macierzystych

    12.12.2011. 07:47
    opublikowane przez: Redakcja Naukowy.pl

    Oksygenaza hemowa (HO-1), enzym odpowiedzialny m.in. za rozkładanie hemu - składnika hemoglobiny, może mieć duże znaczenie także w różnicowaniu komórek macierzystych - wynika z badań prowadzonych w Zakładzie Biotechnologii Medycznej Wydziału Biochemii, Biofizyki i Biotechnologii Uniwersytetu Jagiellońskiego. Badania mogą być pomocne w leczeniu m.in. mięsaka prążkowanokomórkowego - najczęstszego nowotworu tkanek stałych u dzieci.

    Wyniki badań opublikowano w najnowszym wydaniu czasopisma "Antioxidant & Redox Signaling". Praca powstała w całości w Polsce. Pierwszymi autorami są doktoranci: Magdalena Kozakowska i Maciej Cieśla, który niedawno otrzymał grant Fundacji na rzecz Nauki Polskiej na badania nad sposobami leczenia mięsaków. Koordynowali ją wspólnie prof. Alicja Józkowicz i prof. Józef Dulak.

     

    Krakowscy naukowcy, którzy od kilkunastu lat prowadzą badania nad oksygenazą hemową, zwrócili uwagę, że w komórkach satelitarnych - czyli komórkach macierzystych mięśni poprzecznie prążkowanych - zwiększenie aktywności HO-1 powodowało szybsze namnażanie się tych komórek. Poprawiała się także przeżywalność tych komórek i oporność na stres oksydacyjny polegający na niedotlenieniu komórek i zwiększonej przez nie produkcji m.in. wolnych rodników.

    Badania krakowskich naukowców pokazały także, że proces różnicowania jest zależny od wpływu oksygenazy hemowej na cząsteczki mikroRNA - krótkie, niekodujące białka cząsteczki RNA, regulujące ekspresję wielu genów. Po wstrzyknięciu myszom do mięśni komórek wzbogaconych w oksygenazę hemową, utworzyły się w nich guzy.

    "Stwierdziliśmy, że oksygenaza wpłynęła na ekspresję około 20 proc. spośród niemal 700 znanych mysich microRNA - krótkich, niekodujących białka cząsteczek RNA, uważanych za kluczowe dla regulacji ekspresji innych genów, które produkują białka" - mówi prof. Józef Dulak, kierownik Zakładu Biotechnologii Medycznej Wydziału Biochemii, Biofizyki i Biotechnologii Uniwersytetu Jagiellońskiego.

    Jak dodaje, badania pokazały, że HO-1 zahamowała także ekspresję specjalnych microRNA - tzw. myomirów, które odpowiadają za różnicowanie komórek satelitarnych do mięśni szkieletowych. Oznacza to, że komórki satelitarne ze zwiększoną ekspresją oksygenazy hemowej, nie różnicują się do mięśni szkieletowych.

    "Co ciekawe, pokazaliśmy, że podobna zależność może występować w komórkach mięsaka prążkowanokomórkowego - najczęstszego nowotworu tkanek stałych u dzieci" - wyjaśnia prof. Dulak.

    "Istnieją dwie główne postacie tych nowotworów - mięsaki łagodniejsze - embrionalne lub zarodkowe i groźniejsze zwane pęcherzykowatymi. Nasze badania pokazały, że mięsaki bardziej złośliwe charakteryzują się wysokim poziomem oksygenazy hemowej i zmniejszoną ekspresją mikroRNA, które odpowiedzialne jest za różnicowanie tych komórek. Mięsaki łagodniejsze nie mają tak wysokiego poziomu oksygenazy hemowej" - mówi prof. Dulak.

    Naukowcy przypuszczają, że badania te odkryły nowy mechanizm, być może istotny dla rozwoju tego nowotworu, który może być wykorzystany w jego leczeniu. "Z jednej strony zahamowanie ekspresji HO-1 w komórkach mięsaka może sprzyjać różnicowaniu komórek nowotworu do komórek mięśni (tzw. terapia różnicująca) - mówi prof. Alicja Józkowicz. - Zarazem mogłoby poprawiać skuteczność chemioterapii wykorzystywanej w leczeniu mięsaka, gdyż HO-1 osłabia efektywność takiej terapii przeciwnowotworowej, co pokazaliśmy także w innych badaniach".

    Zdaniem naukowców, odkryte przez nich mechanizmy interakcji między HO-1 a microRNA mogą mieć znaczenie także w badaniach nad dystrofią mięśniową prowadzącą m.in. do zaniku mięśni poprzecznie prążkowanych.

    "Nasza ostatnia praca dodaje kolejny element do zestawu ważnych funkcji, jaką HO-1 odgrywa w naszym organizmie - opowiadają badacze. - Enzym ten rozkłada hem - składnik hemoglobiny, czerwonego barwnika krwi - do jonów żelaza, tlenku węgla i biliwerdyny, przekształcanej następnie do żółtej bilirubiny. Efekty działania HO-1 możemy zobaczyć w zmieniającym kolor siniaku lub podczas żółtaczki".

    Jednak - jak zaznaczają krakowscy naukowcy - oksygenaza hemowa pełni znacznie więcej innych funkcji, tylko pośrednio związanych z rozkładem hemu. "Wcześniej pokazaliśmy, że HO-1 jest istotna dla powstawania nowych naczyń krwionośnych i z tego powodu jest także potrzebna dla prawidłowego przebiegu gojenia ran. Okazuje się jednak, że może być celem w terapii przeciwnowotworowej, a jej wpływ na różnicowanie komórek wydaje się być istotny w badaniach nad komórkami macierzystymi" - podsumowują prof. Józkowicz i prof. Dulak.

    PAP - Nauka w Polsce

    bsz/ agt/


    Czy wiesz ĹĽe...? (beta)
    Komórki iPS (ang. iPSC – induced pluripotent stem cells) – rodzaj pluripotencjalnych komórek macierzystych, które zostały sztucznie otrzymane z nie-pluripotentnych komórek (przeważnie komórek somatycznych dorosłego człowieka) przez wymuszenie ekspresji odpowiednich genów w tych komórkach. Merystemoidy – miejsce w obrębie tkanek stałych, w którym następuje różnicowanie się komórek w kierunku bardziej wyspecjalizowanych. Miejsce takie może charakteryzować się zwiększona aktywnością podziałową. Przykładem są komórki macierzyste aparatów szparkowych lub komórki inicjalne włosków czyli tworów epidermy. Zwykle dochodzi do zahamowania różnicowania się komórek w okolicy merystemoidu, co skutkuje równomiernym rozłożeniem stryktur powstających z merystemoidu. Struktura organizacyjna – układ stanowisk i składających się z nich komórek organizacyjnych wewnątrz organizacji. Może ona dotyczyć organizacji kilku różnych zewnętrznych komórek, które pracują wspólnie a nawet komórek zewnętrznych, które mają własną organizację, jednak zorganizowały współpracę poszczególnych swoich części, np. działów czy brandów.

    Anaplazja – brak zróżnicowania lub proces odróżnicowania się komórek, powstawanie z komórek zróżnicowanych nowych pokoleń komórek o coraz to mniejszym stopniu zróżnicowania albo też zatrzymanie różnicowania (dojrzewania) komórki wraz z zachowaną zdolnością do mnożenia się. Charakterystyczna dla nowotworów złośliwych. Obecnie uważa się, że raczej nowotwory powstają z komórek macierzystych niż że dochodzi do procesu odróżnicowania. Pluripotencja (pluripotencjalność) jest zdolnością pojedynczej komórki do zróżnicowania się w dowolny typ komórek somatycznych poza komórkami trofoblastu, które w późniejszych stadiach rozwoju tworzą łożysko. Z pluripotencjalnych komórek macierzystych pochodzących z najwcześniejszego stadium zarodka – 5-dniowej blastocysty biorą początek komórki wszystkich tkanek i narządów. Zaledwie 30-35 tych komórek, z których składa się węzeł zarodkowy blastocysty "gromadzi" instrukcje dla 100 bilionów (10) komórek tworzących ludzki organizm.

    Zespoły mielodysplastyczne (mielodysplazja szpiku) (ang. Myelodysplastic syndrome; MDS) – klonalne zaburzenie hematopoetycznej komórki macierzystej uniemożliwiające różnicowanie i dojrzewanie komórek, przejawiające się jedno-, dwu- lub trójliniową cytopenią i najczęściej bogatokomórkowym szpikiem. Jest to grupa blisko związanych jednostek chorobowych, w których proces tworzenia krwinek jest zakłócony przez niezdolność niedojrzałych komórek do prawidłowego wzrostu i rozwoju. Czasami nazywany stanem przedbiałaczkowym, ponieważ w zaawansowanych postaciach stosunkowo często transformuje w kierunku ostrych białaczek. RB (pRb, Rb) – białko kodowane przez gen supresorowy RB1. Gen RB1 jest zmutowany w wielu typach nowotworów człowieka. Nazwa białka RB pochodzi od siatkówczaka (retinoblastoma), nowotworu spowodowanego mutacjami w obydwu allelach kodującego białko genu RB1. Białko RB w komórkach jest obecne zazwyczaj jako fosfoproteina, i jest substratem reakcji fosforylacji przeprowadzanej przez liczne białka enzymatyczne z rodziny kinaz. Udowodnioną funkcją białka RB jest zapobieganie podziałowi komórki przez zatrzymanie cyklu komórkowego. Niefunkcjonalne białko RB nie zapobiega podziałom komórek, stąd udowodniony związek między mutacjami z utratą funkcji w genie RB1 a niekontrolowanymi podziałami komórek nowotworu.

    Komórki satelitarne – komórki macierzyste mięśni szkieletowych. Powstają z mioblastów, które nie zlały się do roboczych komórek mięśniowych, lecz ściśle do nich przylegają. U dorosłego człowieka ich jądra stanowią ok. 5% jąder komórek mięśniowych. Uaktywniają się przy uszkodzeniu lub trenowaniu mięśnia, prowadząc do regeneracji lub przerostu komórek mięśniowych. W warunkach doświadczalnych udaje się je różnicować do innych komórek niż mięśniowe. Krew pępowinowa - stanowi źródło krwiotwórczych komórek macierzystych oraz komórek mezenchymy. Ta krew jest jedynym źródłem komórek macierzystych niewymagającym używania metod inwazyjnych u dawcy.

    Terapia komórkowa - rozwijająca się w medycynie gałąź terapii, polegająca na wykorzystaniu ludzkich komórek do regeneracji uszkodzonych tkanek lub narządów pacjenta. Komórki te mogą pochodzić z tego samego pacjenta, lub od dawcy. Metoda ta różni się od przeszczepów tym, że korzysta się w niej nie z całych narządów lub tkanek, ale z wyizolowanych, oczyszczonych i czasem zmodyfikowanych komórek. Do terapii komórkowej często stosuje się komórki macierzyste lub progenitorowe, które posiadają wewnętrzny potencjał regeneracji uszkodzonych tkanek. Przykładowo, ostatnio pojawia się coraz więcej doniesień o skutecznym wykorzystaniu komórek macierzystych pochodzących ze szpiku kostnego do regeneracji mięśnia sercowego po zawale.

    Foxp3 (ang. forkhead box P3; synonimy: skurfina, IPEX, DIETER, AIID, PIDX, XPID) – czynnik transkrypcyjny odgrywający istotną rolę w regulacji odpowiedzi odpornościowej. Jest on kluczowym czynnikiem transkrypcyjnym odpowiedzialnym za powstawanie limfocytów T regulatorowych, szczególnie poprzez aktywację genów istotnych dla funkcjonowania tych komórek oraz modyfikowanie sygnału biegnącego od TCR. Gen kodujący białko Foxp3 zlokalizowany jest na chromosomie X (miejsce Xp11.23). Mimo że Foxp3 jest białkiem kojarzonym głównie z limfocytami Treg, jego ekspresję potwierdzono również w komórkach nowotworowych . Mutacje genu FOXP3 prowadzące do wytwarzania niefunkcjonalnego białka powodują brak wytwarzania limfocytów Treg w organizmie. Prowadzi to do choroby genetycznej IPEX, charakteryzującej się m.in. wielonarządowym zapaleniem .

    Terapia fotodynamiczna (PDT) – forma leczenia, w której wykorzystuje się nietoksyczne związki światłoczułe, które po ekspozycji na specyficzny rodzaj światła, stają się toksyczne dla komórek nowotworowych i innych chorych komórek. PDT wykazuje również zdolność do zabijania komórek mikroorganizmów, w tym bakterii, grzybów i wirusów. PDT jest powszechnie stosowana w leczeniu trądziku. Jest ona stosowana klinicznie do leczenia wielu schorzeń, w tym związanego z wiekiem zwyrodnienia plamki żółtej i nowotworów złośliwych. Jest uznanawana jako strategia leczenia, która jest zarówno mało inwazyjna jak i minimalnie toksyczna. Komórki NC (ang. Natural Cytotoxic cells – komórki naturalnie cytotoksyczne) – hipotetyczne i być może nieistniejące komórki, którym przypisuje się cytotoksyczność naturalną. Istnienie tych komórek opisano u myszy, u których wraz z wiekiem dochodzi do utraty aktywności komórek NK, ale jednocześnie wciąż istnieje grupa komórek, która wykazuje cytotoksyczność naturalną nie zanikającą w trakcie starzenia się . Nie posiadają one markerów różnicowania komórek NK , mają natomiast zdolność lizowania komórek nowotworowych i są pobudzane przez IL-2 i IL-3 . Komórki NC nie posiadają także cech właściwych limfocytom T, limfocytom B oraz makrofagom . W trakcie rozwoju osobniczego pojawiają się wcześnie - ich aktywność opisano już w 10-dniowych zarodkach mysich .

    Superowulacja - uwolnienie w jednym czasie kilku (kilkunastu) komórek jajowych z pękniętych dojrzałych pęcherzyków jajnikowych. Superowulacja może być procesem naturalnym bądź stymulowanym przez człowieka. Stosowana u samic dawczyń komórek jajowych w technice przenoszenia zarodków, w wyniku czego można znacznie zwiększyć liczbę potomstwa zwierząt o pożądanych cechach. Historia odkrycia i badań nad stwardnieniem guzowatym: Historia odkrycia stwardnienia guzowatego i badań nad tą chorobą liczy dopiero niecałe 200 lat. Stwardnienie guzowate (tuberous sclerosis, tuberous sclerosis complex, TSC) jest rzadką, wielonarządową chorobą genetyczną, w której rozwijają się łagodne guzy mózgu i guzy innych ważnych życiowo narządów: nerek, serca, oczu, płuc i skóry. Zespół objawów może obejmować napady drgawkowe, opóźnienie rozwoju, zaburzenia behawioralne i schorzenia dermatologiczne, a także objawy wynikające z zajęcia płuc i nerek. TSC może być spowodowane mutacją w jednym z dwóch genów: TSC1 i TSC2 , kodujących, odpowiednio, hamartynę i tuberynę. Oba geny należą do genów supresorowych (antyonkogenów), gdyż funkcją kodowanych przez nie białek jest regulacja cyklu komórkowego i procesu różnicowania komórek. W przeszłości zachorowania na tę chorobę traktowano jak ciekawe przypadki kazuistyczne; obecnie, badaniom nad patogenezą TSC przypisuje się istotne znaczenie w poznawaniu procesu nowotworzenia i supresji nowotworów.

    Dodano: 12.12.2011. 07:47  


    Najnowsze