• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Opracowywanie tańszych, alternatywnych ogniw słonecznych dla Europy

    04.11.2013. 15:58
    opublikowane przez: Redakcja

    W obliczu zagrażającej zmiany klimatu i coraz wyższych światowych emisji CO2, zapotrzebowanie na odnawialne technologie energetyczne osiągnęło obecnie poziom szczytowy. Niemniej, aby cieszyły się powszechną akceptacją na rynku, nowe technologie muszą być tanie, nadawać się do masowej produkcji i łatwo się wdrażać.

    Ostatecznie chodzi o to, by zachować równowagę przy minimalizowaniu emisji gazów cieplarnianych bez uszczerbku dla przyszłego rozwoju gospodarczego i jakości życia.

    Celem dofinansowanego ze środków unijnych projektu SCALENANO (Development and scale-up of nanostructured based materials and processes for low-cost high-efficiency chalcogenide-based photovoltaics) jest produkcja wysokowydajnych ogniw fotowoltaicznych opartych na alternatywnych i standardowych technologiach krzemowych. Ogniwo PV, czy inaczej ogniwo słoneczne, to urządzenie elektryczne, które bezpośrednio przekształca energię światła w prąd elektryczny.

    Profesor Alejandro Perez-Rodriguez z Katalońskiego Instytutu Badań Energetycznych, koordynator projektu SCALENANO, twierdzi że naukowcy koncentrują się na procesach chemicznych, które w odróżnieniu od większości technologii przemysłowych nie wymagają złożonych i kosztownych maszyn ani sprzętu.

    "Opracowanie cienkowarstwowych technologii umożliwi wysoką sprawność konwersji fotowoltaicznej przy znaczącym obniżeniu kosztów produkcji" - twierdzi.

    W toku prac nad projektem SCALENANO - informuje profesor Perez-Rodriguez - zastosowane zostaną innowacyjne procesy oparte na osadzaniu elektrolitycznym nanostrukturyzowanych prekursorów, a także alternatywne procesy o bardzo wysokich, potencjalnych wskaźnikach wydajności i przetwarzania. Obejmują one techniki druku z wykorzystaniem nowatorskich receptur farb nanocząsteczkowych i nowe, opłacalne techniki osadzania.

    "Dążąc do osiągnięcia naszych ambitnych celów, analizujemy nowe koncepcje architektury ogniw oparte na nanostrukturyzowanych warstwach tlenku cynku" - informuje. "Ponadto, aby zwiększyć wydajność i niezawodność nowego procesu produkcji, opracowujemy techniki oceny jakości i monitoringu procesu. To nieniszczące techniki, które są w stanie dostarczyć użytecznych informacji, w miarę możliwości w czasie rzeczywistym, w toku produkcji ogniw i modułów słonecznych".

    Po 18 miesiącach realizacji projektu, zaplanowanego na 42 miesiące, profesor Perez-Rodriguez twierdzi, że pewne interesujące wyniki już zostały wypracowane. Naukowcy wykazali skalowalność procesów na bazie osadzania elektrolitycznego na potrzeby syntezy rozległych obszarów cienkowarstwowych absorberów chalkogenidkowych o wysokiej jednorodności. Wyprodukowali już średniej wielkości moduły słoneczne o wydajności ogniwa rzędu 15,4%.

    Dodaje: "Zdefiniowaliśmy także skalowalne szlaki syntezy nanocząstek do wykorzystania w farbach do produkcji prekursorów ogniw słonecznych za pomocą niezwykle szybkich i prostych procesów druku, podobnych do tych stosowany przy druku gazet".

    Naukowcy ustalili także procesy, między innymi osadzania z kąpieli chemicznej (CBD) i nowego, wspomaganego aerozolem elektrostatycznym, osadzania z fazy gazowej (ESAVD) na potrzeby syntezy warstw transparentnych tlenów przewodzących (TCO) - zasadniczej części ogniwa słonecznego.

    Prace nad projektem SCALENANO mogą stanowić istotny krok w kierunku zwiększenia udziału odnawialnych źródeł energii w koszyku energetycznym UE i pomóc w podniesieniu konkurencyjności producentów ogniw słonecznych.

    "Mówimy tutaj o wspomaganiu prac nad nowym modelem produkcji energii, który stanowi kluczowe wyzwanie XXI w." - twierdzi profesor Perez-Rodriguez. "Konkurencyjne technologie PV umożliwią przeciętnym obywatelom zyskiwanie statusu producenta energii, otwierając drogę do samodzielnego wytwarzania elektryczności. To bez wątpienia przyczyni się do bardziej zdecentralizowanego modelu energetyki, w którym obywatele odgrywają aktywną rolę".

    Projekt SCALENANO, którego zakończenie zaplanowano na lipiec 2015 r., otrzymał około 7,5 mln EUR dofinansowania ze środków unijnych.

    Przedstawiciele projektu są aktywnymi członkami EU PV Clusters - europejskiego klastra projektów poświęconych nanotechnologii i fotowoltaice - jedynej w swoim rodzaju i ważnej inicjatywy na szczeblu europejskim, która ma zgromadzić wszystkie projekty z dziedziny fotowoltaiki, aby omawiać strategie przemysłowe i podkreślać wiodącą rolę nanotechnologii.

    W ramach projektu SCALENANO odbędą się Drugie warsztaty i walne zgromadzenie EU PV Clusters (Barcelona, listopad 2013 r.).
    Za: CORDIS


    Czy wiesz ĹĽe...? (beta)
    Energetyka słoneczna – gałąź przemysłu zajmująca się wykorzystaniem energii promieniowania słonecznego zaliczanej do odnawialnych źródeł energii. Od początku XXI wieku rozwija się w tempie około 40% rocznie. W 2012 roku łączna moc zainstalowanych ogniw słonecznych wynosiła 100 GW (wzrost o 41% w stosunku do 2011 roku, 900% od 2007 roku) i zaspokajały one 0,4% światowego zapotrzebowania na energię elektryczną. Energetyka słoneczna w Niemczech – Niemcy posiadają najwięcej na świecie zainstalowanych ogniw słonecznych. Całkowita moc zainstalowana tych ogniw przekroczyła 32 GW w grudniu 2012 oraz 35,5 GW przy końcu listopada 2013 . Energia słoneczna w Niemczech – Niemcy posiadają najwięcej na świecie zainstalowanych ogniw słonecznych. Całkowita moc zainstalowana tych ogniw przekroczyła 32 GW w grudniu 2012.

    Baterie słoneczne ISS – zespół ogniw słonecznych zastosowanych na Międzynarodowej Stacji Kosmicznej, ze względu na to, iż światło słoneczne jest jedynym łatwo dostępnym źródłem energii na orbicie. Spośród wielu baterii słonecznych ISS największe są dwa, zbudowane w Stanach Zjednoczonych, bliźniacze panele (każdy ma długość 34 m i szerokość 12 m) zamontowane na kratownicy ITS P6. GreenEvo – Acelerator Zielonych Technologii (AZT) - projekt Ministerstwa Środowiska mający na celu międzynarodowy transfer technologii, sprzyjających ochronie środowiska. W ramach projektu wytypowane zostały najlepsze polskie rozwiązania, w tym technologie oczyszczania ścieków, przetwarzania odpadów niebezpiecznych oraz rozwiązania wspierające wykorzystanie odnawialnych źródeł energii, obejmujące maszyny rolnicze służące do wytwarzania brykietu i kolektory słoneczne.

    Ogniwo paliwowe z membraną do wymiany protonów, PEMFC (ang. Proton Exchange Membrane Fuel Cell), też ogniwo paliwowe z polimerowym elektrolitem, PEFC (Ploymer Electrolyte Fuel Cell) – to rodzaj ogniwa paliwowego. PEMFC są stosowane powszechnie w przemyśle transportowym (pojazdy mechaniczne). Charakteryzują się niską temperaturą pracy, krótkim czasem rozruchu, niewielką masą oraz gabarytami w porównaniu z innymi ogniwami. Obecnie zastosowania idą w kierunku związanym z wykorzystaniem tych ogniw do napędzania autobusów i samochodów. Jako źródła wytwarzania energii, umożliwiają osiągnięcie mocy ok. 200 kW przy sprawności rzędu 34%. Poligrafika – dyscyplina naukowa obejmująca całokształt zagadnień dotyczących przemysłowych odmian druku, począwszy od metod przygotowania do druku, poprzez procesy druku, a skończywszy na procesach introligatorskich. Zajmuje się także zagadnieniami pokrewnymi, jak np. ekonomika produkcji przemysłowej w branży poligraficznej. Poligrafika nie zajmuje się artystycznymi odmianami druku.

    Ogniwo paliwowe ze stałym tlenkiem (inaczej: z zestalonym elektrolitem tlenkowym, SOFC (ang. Solid Oxide Fuel Cell) – rodzaj ogniwa paliwowego, wymagającego wysokiej temperatury pracy (ok. 600-1000 °C). Ciepło uzyskiwane za pomocą tego ogniwa może być wykorzystane w kogeneracji. Początkowo znaczne wymiary, wysoka temperatura pracy i znaczny czas rozruchu ograniczają zastosowanie ogniw SOFC do rozwiązań do stałej zabudowy. Późniejszy rozwój technologiczny pozwolił na zastosowanie tego typu ogniw również w transporcie. Ogniwo paliwowe to ogniwo generujące energię elektryczną z reakcji utleniania stale dostarczanego do niego z zewnątrz paliwa. W odróżnieniu od ogniw galwanicznych (akumulatory, baterie), w których energia wytwarzanego prądu musi zostać wcześniej zgromadzona wewnątrz tych urządzeń (co znacznie ogranicza czas ich pracy), ogniwa paliwowe nie muszą być wcześniej ładowane. Wystarczy tylko doprowadzić do nich paliwo. W przypadku ogniw galwanicznych ładowanie może być procesem trwającym wiele godzin, a ogniwa paliwowe są gotowe do pracy po niewielkim czasie wymaganym do nagrzania.

    Dodano: 04.11.2013. 15:58  


    Najnowsze