• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • ERC finansuje polskie badania ścieżek naprawy materiału genetycznego

    19.03.2012. 07:53
    opublikowane przez: Redakcja Naukowy.pl

    Mechanizmy naprawy DNA to kluczowy proces nie tylko ze względów poznawczych, ale także dlatego, że u ludzi jego zaburzenia prowadzą m.in. do powstawania nowotworów. Badania ścieżek naprawy materiału genetycznego prowadzi dr Marcin Nowotny, kierownik Pracowni Struktury Białka Międzynarodowego Instytutu Biologii Molekularnej i Komórkowej w Warszawie w projekcie finansowanym z grantu Europejskiej Rady ds. Badań (ERC Starting Grant).

    "Przepis na każdy żywy organizm jest zapisany w cząsteczkach DNA. Są tam zakodowane wszelkie informacje o organizmie. DNA to związek chemiczny, który ulega różnym uszkodzeniom. Niektóre z nich są spontaniczne, zachodzą w czasie, inne są związane z czynnikami zewnętrznymi, np. z promieniowaniem ultrafioletowym pochodzenia słonecznego" - tłumaczy dr Nowotny.

    DNA w komórce podlega przypadkowym modyfikacjom chemicznym, które mogą uszkodzić informację genetyczną. Dlatego dla utrzymania stabilności materiału genetycznego kluczowe są procesy naprawy takich uszkodzeń. W ewolucji powstało wiele bardzo efektywnych ścieżek, które wypełniają tę rolę. Każdy organizm ma wyszukany system mechanizmów, które naprawiają takie uszkodzenia. "Przepis" organizmu musi bowiem pozostać nietknięty.

    Badania strukturalne wybranych elementów tych ścieżek są tematem projektu finansowanego przez ERC. Razem z dr. Nowotnym nad projektem europejskim pracuje mgr Marcin Jaciuk, mgr Michał Miętus i mgr Marzena Nowacka - zaangażowani w eksperymenty.

    Podstawową metodą, jakiej używają biolodzy molekularni, jest krystalografia białek. Wszystkie ścieżki naprawy DNA opierają się właśnie o białka. Krystalografia pozwala z dużą precyzją określić, jak są poukładane atomy w cząsteczkach białek, a co za tym idzie pozwala z ogromną precyzją ustalić, jak białka działają.

    Metoda polega na tworzeniu mikrokryształów białek (wielkości części milimetra), które potem eksponuje się na promieniowanie rentgenowskie. Dzięki różnym zjawiskom fizycznym, jakie wtedy zachodzą oraz odpowiednim programom komputerowym można odtworzyć ułożenie atomów w cząsteczkach białek, które budują kryształy.

    Badania dr. Nowotnego mają charakter podstawowy, trudno więc mówić o ich praktycznym zastosowaniu. Projekt nie będzie prowadził bezpośrednio do jakichkolwiek aplikacji, ale poznawanie ścieżek naprawy DNA jest czymś bardzo ważnym. Kiedy materiał genetyczny komórki jest zaburzony, pojawiają się mutacje, czyli zmiany kodu genetycznego. Prowadzą one do rozregulowania różnych procesów w komórkach i niekontrolowanego ich wzrostu, a tym samym do powstawania nowotworów.

    "Bardzo często komórki nowotworowe nie potrafią naprawiać DNA. Wiele leków przeciwnowotworowych uszkadza DNA, a gdy komórka nowotworowa sobie z tym nie radzi - umiera. Poznawanie tych procesów jest bardzo istotne dla późniejszych prac - już nad nowymi lekami czy terapiami" - podkreśla dr Nowotny.

    Projekt realizowany w Instytucie Biologii Molekularnej i Komórkowej składa się z trzech części. Pierwsza dotyczy bakteryjnej ścieżki naprawy DNA NER (ang. Nucleotide Excision Repair- ścieżka z wycinaniem nukleotydów).

    Są w nią zaangażowane dwa białka. Jedno z nich lokalizuje uszkodzenie DNA, a drugie weryfikuje jego obecność. Badacze odkryli, że wykrywanie uszkodzenia nie zachodzi przez bezpośrednie oddziaływanie z miejscem modyfikacji, ale przez detekcję odkształceń DNA powodowanych przez uszkodzenie. W ramach projektu ERC chcą poznać mechanizm kolejnych etapów bakteryjnej ścieżki NER, rozwiązać strukturę krystaliczną kompleksu obu białek z DNA i określić, w jakiś sposób DNA jest przekazywane do drugiego białka i w jaki sposób weryfikuje ono obecność uszkodzenia.

    Druga części projektu dotyczy eukariotycznej ścieżki NER, w której funkcjonują białka niespokrewnione z białkami ze ścieżki bakteryjnej. Jednym z takich białek jest nukleaza XPG zaangażowana w końcowych etapach NER. Jej rola polega na wycinaniu fragmentu DNA zawierającego uszkodzenie. Nie są dostępne żadne dane strukturalne na temat tego białka, a szczegóły mechanizmu jego działania pozostają nieznane. Dlatego zespół dr. Nowotnego pracuje nad określeniem jego struktury przestrzennej w kompleksie z kwasem nukleinowym, aby poznać ten mechanizm.

    Trzecia część projektu dotyczy kompleksu naprawy DNA Rad16-Rad7 obecnego u drożdży, którego rolą jest naprawa uszkodzeń nietranskrybowanych nici aktywnych genów. Badaczy intryguje, że kompleks ten posiada dwie aktywności. Pierwsza z nich to aktywność helikazy, dzięki której kompleks ten przesuwa się wzdłuż DNA, aby wykryć uszkodzenie, a druga to aktywność ligazy ubikwityny, której rolą jest najprawdopodobniej skomunikowanie Rad16-Rad7 z innymi ścieżkami naprawy DNA. Nieznany jest mechanizm działania obu aktywności oraz sposób ich koordynacji. Dlatego uczeni zastosują połączenie metod strukturalnych i biochemicznych, aby określić te mechanizmy.

    PAP - Nauka w Polsce, Karolina Olszewska

    agt/bsz


    Czy wiesz ĹĽe...? (beta)
    XPA – białko człowieka kodowane przez gen XPA w locus 9q22.3, zaangażowane w proces naprawy przez wycinanie nukleotydu (NER). Gen XPA koduje łańcuch polipeptydowy długości 273 i szacunkowej masie komórkowej 31 kDa. Białko ludzkie wykazuje 95%-homologię z mysim odpowiednikiem i zawiera wiele α-helis i motyw palca cynkowego, jak inne białka wiążące DNA. Gen XPA zawiera sześć eksonów. Białko XPA wiąże się z białkiem ERCC1. Dowiedziono, ze funkcją białka XPA jest związanie kompleksu wycinającego białka ERCC1 i jego rekrutacja do miejsca uszkodzenia DNA, co jest niezbędnym etapem mechanizmu naprawy NER. Mutacje w genie XPA odpowiadają za jedną z postaci xeroderma pigmentosum (typ A albo typ I, OMIM*611153). Naprawa DNA – szereg procesów prowadzących do identyfikacji i naprawy zmian w cząsteczkach DNA w żywej komórce. W komórkach organizmów żywych procesy metaboliczne i czynniki środowiskowe mogą powodować uszkodzenie DNA. W każdej komórce codziennie ma miejsce nawet milion takich uszkodzeń. Wiele z nich powoduje trwałe zmiany w cząsteczce DNA, które mogą upośledzić albo pozbawić komórkę możliwości prawidłowej transkrypcji kodowanego przez uszkodzony fragment DNA genu. Inne uszkodzenia mogą skutkować potencjalnie groźną dla genomu komórki mutacją, dotyczącą tej komórki i wszystkich następnych powstałych z niej po podziałach. Oznacza to, że proces naprawy DNA w komórce musi być cały czas aktywny, by móc szybko i skutecznie niwelować skutki każdego uszkodzenia komórkowego DNA. Geny kodujące białka mechanizmów naprawy DNA człowieka: DNA komórki jest stale narażone na czynniki uszkadzające. Sprawnie działające mechanizmy naprawy DNA funkcjonują w komórkach organizmów zarówno prokariotycznych jak i eukariotycznych. Badania genomu ludzkiego pozwoliły zidentyfikować szereg genów kodujących białka biorące udział w różnorodnych mechanizmach naprawy DNA. Poznano dotąd ponad 130 genów o takiej, udowodnionej lub prawdopodobnej, funkcji. Nowe geny naprawy DNA są ciągle odkrywane dzięki badaniom porównawczym sekwencji genów człowieka i homologów tych genów u organizmów modelowych, takich jak E. coli i S. cerevisiae. Badania te mają znaczenie dla medycyny, ponieważ do tej pory zidentyfikowano już kilkanaście chorób, w których patogenezie mają udział niesprawne mechanizmy naprawy DNA.

    Naprawa sprzężona z transkrypcją (TCR, ang. Transcription-coupled repair) - mechanizm naprawy DNA sprzężony z transkrypcją. Uszkodzenie DNA może spowodować zatrzymanie pracującej polimerazy RNA. Powoduje to przyłączenie się białek XPG i CSB oraz rekrutację do kompleksu czynnika transkrypcyjnego TFIIS. Dzięki temu białka naprawcze zyskują dostęp do miejsca uszkodzenia i naprawiają uszkodzony fragment, dzięki czemu polimeraza może kontynuować pracę. MUTYH (E. coli MutY homolog) – gen kodujący glikozylazę DNA zaangażowaną w proces naprawy uszkodzeń oksydacyjnych DNA. Ten typ naprawy określa się jako naprawę przez wycinanie zasady. Białko MUTYH lokalizuje się w jądrze komórkowym i mitochondriach. Gen MUTYH znajduje się w locus 1p34.3-32.1.

    Naprawa poprzez scalanie niehomologicznych końców DNA (ang. non-homologous end joining, NHEJ) – jeden z dwóch mechanizmów naprawy uszkodzeń obu nici DNA (ang. double-strand breaks, DSBs). W efekcie DSBs oba łańcuchy nukleotydowe w podwójnej helisie zostają rozerwane. Drugim mechanizmem naprawy tych potencjalnie groźnych dla integralności genomu uszkodzeń jest naprawa rekombinacyjna (określana także jako rekombinacja homologiczna). NHEJ jest częściej wykorzystywanym mechanizmem naprawy w komórkach ssaków (u drożdży dominuje naprawa rekombinacyjna). Termin wprowadzili w 1996 roku Moore i Haber. Wiropeksja to sposób wirusów wnikania do komórki. Polega on na wykorzystaniu naturalnych mechanizmów komórki. W przypadku wirusa, kiedy przyłącza się on do komórki, ta "wyczuwając" znane jej białko wpuszcza agresora do cytoplazmy, dzięki czemu wirus może zaaplikować się w jej wnętrzu. Wirus ma białko takie samo jak komórka tylko na "wystających nitkach". To dzięki nim może wniknąć do środka komórki. Gdy owe "niteczki" zostaną na powierzchni komórki, w jej środku rozpoznawalne zaczyna być obce białko, które komórka niszczy. W ten sposób wirus "wpuszcza" do jądra komórkowego swój materiał genetyczny, który może się ulotnić z niszczonego przez komórkę kapsydu.

    RAD51 – gen będący homologiem prokariotycznego genu RecA. Podobne strukturalnie białka zostały zgrupowane w rodzinie białek RAD51, zaangażowanych w mechanizm naprawy DNA przez rekombinację homologiczną. U ludzi gen RAD51 znajduje się na chromosomie 15 i koduje białko długości 339 reszt aminokwasów. Białko p53 – czynnik transkrypcyjny o własnościach supresora nowotworowego. Białko p53 jest zaangażowane w regulację wielu procesów komórkowych, a w szczególności aktywacji mechanizmów naprawy DNA lub indukcji apoptozy w odpowiedzi na uszkodzenia DNA.

    Biologia strukturalna – dziedzina biologii znajdująca się na pograniczu biologii molekularnej, biochemii oraz biofizyki, zajmująca się badaniem przestrzennej struktury dużych biocząsteczek, takich jak białka i kwasy nukleinowe. Badania te mają podstawowe znaczenie dla wyjaśnienia mechanizmu większości procesów zachodzących w komórce takich jak oddychanie komórkowe czy obróbka informacji genetycznej, ponieważ zaangażowane są w nie cząsteczki białek, których funkcja jest ściśle powiązana z ich budową.

    Jądro komórkowe, nukleus - otoczone błoną organellum obecne we wszystkich komórkach eukariotycznych, z wyjątkiem tych, które wtórnie je utraciły w trakcie różnicowania, np. dojrzałe erytrocyty ssaków. Zawiera większość materiału genetycznego komórki, zorganizowanego w postaci wielu pojedynczych, długich nici DNA związanych z dużą ilością białek, głównie histonowych, które razem tworzą chromosomy. Geny zlokalizowane w chromosomach stanowią genom komórki. Funkcją jądra komórkowego jest przechowywanie i powielanie informacji genetycznej oraz kontrolowanie czynności komórki, poprzez regulowanie ekspresji genów. Główne struktury, które obecne są w budowie jądra komórkowego to błona jądrowa, podwójna membrana otaczająca całe organellum i oddzielająca je od cytoplazmy oraz blaszka jądrowa, sieć delikatnych włókienek białkowych utworzonych przez laminy, stanowiących rusztowanie dla jądra i nadających mu wytrzymałość mechaniczną. Błona jądrowa jest nieprzepuszczalna dla większości cząsteczek, dlatego obecne są w niej pory jądrowe. Są to kanały przechodzące przez obie błony, umożliwiające transport jonów i innych cząstek. Transport większych cząstek, takich jak białka, jest ściśle kontrolowany i zachodzi na zasadzie transportu aktywnego, kontrolowanego przez białka transportowe. Transport jądrowy jest kluczowy dla funkcjonowania komórki, ponieważ przemieszczanie cząstek poprzez błonę jądrową wymagane jest zarówno przy zarządzaniu ekspresją genów oraz utrzymywaniu chromosomów.

    Dodano: 19.03.2012. 07:53  


    Najnowsze