• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Polscy badacze na tropie tajemnic węzłów w białkach

    19.01.2010. 12:15
    opublikowane przez: Piotr aewski-Banaszak

    Najnowsze symulacje komputerowe przeprowadzone przez polskich naukowców rzucają nowe światło na zagadkę węzłów tworzących się na łańcuchach białkowych - poinformował rzecznik Instytutu Problemów Jądrowych (IPJ) w Świerku, dr Marek Pawłowski. Symulacje zrealizowali fizycy z IPJ i Instytutu Fizyki PAN we współpracy z Uniwersytetem Warszawskim i Kalifornijskim.

    Dzięki użyciu odpowiednio dobranego, uproszczonego modelu teoretycznego udało się odtworzyć różne rodzaje węzłów znalezionych w białkach, wyjaśnić, dlaczego niektóre typy węzłów nie są w białkach obecne, a także scharakteryzować mechaniczne własności białek z węzłami - wyjaśnia dr Pawłowski.

    Białka są długimi łańcuchami złożonymi z kilkudziesięciu lub nawet kilkuset aminokwasów. W żywych komórkach powstają w wyspecjalizowanych organellach - rybosomach, gdzie tworzone są w formie liniowych, przypominających nici struktur. Nici te skręcają się na różne sposoby, formując proste struktury trójwymiarowe (pętle, wstęgi i helisy), które z kolei zwijają się w kłęby o złożonej konfiguracji przestrzennej.

    "Szczególnie interesującą cechą białek jest to, że w większości przypadków stają się aktywne biologicznie tylko po zwinięciu w ściśle określony kształt" - zauważa dr Joanna Sułkowska (Instytut Fizyki PAN, University of California San Diego).

    Mechanizm przekształcania pierwotnej, liniowej struktury białkowej (nici) w przestrzennie złożoną formę - zawsze o tym samym kształcie (kłąb) - nie został jeszcze dokładnie poznany.

    Sytuacja skomplikowała się dodatkowo kilka lat temu, gdy komputerowej analizie poddano trójwymiarowe struktury proteinowe zawarte w internetowym Banku Danych Białkowych (Protein Data Bank, PDB) - dodaje rzecznik IPJ. Okazało się bowiem, że spośród kilkudziesięciu tysięcy białek ok. 1 proc. zawiera węzły. Skąd się wzięły?

    "Dość trudno sobie wyobrazić, żeby w procesie zwijania łańcucha najpierw utworzyła się pętla, a potem by przez nią precyzyjnie przeszła końcówka łańcucha białkowego" - uważa dr Piotr Sułkowski (IPJ, Caltech).

    Sułkowski na co dzień zajmuje się teorią strun, potencjalną teorią kwantowej grawitacji, która ma głębokie związki z matematyczną teorią węzłów. Dzięki temu można było wykorzystać wiedzę fizyka-teoretyka do rozwiązania konkretnego problemu biofizycznego: zagadki powstawania węzłów w białkach.

    Węzły w matematyce są klasyfikowane za pomocą liczby skrzyżowań, widocznych, gdy dany węzeł zrzutuje się na płaszczyznę. "Rzuty można zrobić na wiele sposobów, lecz zawsze da się znaleźć taki, gdzie liczba przecięć jest najmniejsza" - mówi dr Sułkowski.

    Jak tłumaczy, najprostszym węzłem jest linia przypominająca okrąg: liczba skrzyżowań wynosi wówczas zero. Drugi pod względem złożoności jest klasyczny "supełek" - pętla z przeprowadzonym przez nią końcem, nosząca oznaczenie 3-1 (pierwsza liczba oznacza minimalną liczbę przecięć, druga numeruje rodzaj węzła). Istnieje tylko jeden węzeł z trzema przecięciami (3-1), jeden z czterema (4-1), dwa z pięcioma (5-1, 5-2) itd. - im więcej skrzyżowań, tym większa liczba węzłów. Najbardziej skomplikowany węzeł, jaki do tej poryudało się znaleźć w białkach, ma sześć skrzyżowań (6-1).

    Jak informuje dr Pawłowski, polscy naukowcy zaproponowali prosty mechanizm wiązania węzłów na białkach, który następnie sprawdzono za pomocą symulacji przeprowadzonych na klastrach komputerowych Instytutu Fizyki PAN i University of California San Diego.

    "Przyjęto założenie - opisuje rzecznik IPJ - że najpierw powstaje pętla, która ulega skręceniu, po czym przez jej oczko zostaje przełożona końcówka łańcucha białkowego. Jeśli pętlę skręcimy o 180 stopni i wykonamy przełożenie przez oczko, otrzymamy węzeł 3-1; jeśli wykonamy pełny obrót: 4-1, jeśli dwa obroty: 5-2, przy trzech: 6-1".

    "Są to dokładnie te węzły, które obserwujemy w białkach" - mówi dr Joanna Sułkowska. "Przy okazji wyjaśniliśmy, dlaczego nie widać węzłów typu 5-1. Wymagają one dwóch przełożeń końcówki przez oczko, co jest bardzo mało prawdopodobne" - dodaje.

    Symulacje pozwoliły również zrozumieć, w jaki sposób dochodzi do przetknięcia końcówki łańcucha przez oczko pętli. Proces okazał się dwuetapowy. Najpierw przez pierwotną pętlę przechodzi druga, tymczasowa pętla, co prowadzi do powstania pseudowęzła podobnego do stosowanego przy zawiązywaniu sznurowadeł. Dopiero w drugiej fazie końcówka łańcucha przeciska się przez pętlę pierwotną i formuje właściwy węzeł.

    "Wszystkie te efekty udało się nam odtworzyć stosując prosty model, uwzględniający tylko oddziaływania istniejące w danym białku w stanie natywnym. Dzięki temu u nas białka zwijają się same, bez pomocy innych białek" - podkreśla dr Sułkowska.

    Rzecznik IPJ zwraca uwagę, że ponieważ węzły w wyraźny sposób ograniczają ruchy łańcucha, badania nad ich powstawaniem mają istotne znaczenie dla poznania mechanizmów zwijania i rozwijania struktur białkowych.

    Ponadto, jak dodaje, wiele białek z węzłami to enzymy, w większości przypadków o nieznanej roli w organizmie. Wiadomo jednak, że jedno z białek z węzłem z pięcioma przecięciami prowadzi inne białka do degradacji.

    Zrozumienie roli węzłów w tym procesie może mieć więc szczególne znaczenie przy zwalczaniu chorób, w których kluczową rolę odgrywają agregaty białkowe (np. choroba Alzheimera). Z kolei fakt, iż przy rozciąganiu pewne białka z węzłami stwarzają większy opór mechaniczny niż pozostałe sugeruje, że mogą one znaleźć praktyczne zastosowania - dodaje dr Pawłowski.

    Współpracownikami w badaniach nad węzłami w białkach są: prof. Marek Cieplak (Instytut Fizyki PAN), dr Piotr Szymczak (Wydział Fizyki Uniwersytetu Warszawskiego) oraz prof. Jose Onuchic (University of California San Diego).

    Seria publikacji na ten temat zamieszczono w jednych z najbardziej prestiżowych czasopism naukowych: "Physical Review Letters" oraz "PNAS"("Proceedings of the National Academy of Sciences of the USA").

    Źródło:
    PAP - Nauka w Polsce

    Czy wiesz ĹĽe...? (beta)
    Białka złożone (proteidy) - związki białkowe zawierające w swojej strukturze oprócz podstawowego łańcucha białkowego (białko proste) także inne grupy, tzw. grupy prostetyczne. Białka fuzyjne (białka chimeryczne) – białka powstające z połączenia 2 lub większej liczby genów, które pierwotnie były odpowiedzialne za produkcję niezależnych białek. Produktem genu fuzyjnego jest białko (polipeptyd), którego funkcja jest w pewnym stopniu pochodną funkcji białek kodowanych przez geny wchodzące w skład takiego połączenia. Białko C – jedno z białek hamujących proces krzepnięcia krwi. Należy do białek zależnych od witaminy K. Kodowane jest przez gen PROC zlokalizowany na chromosomie (2q13-q14). Pod względem biochemicznym jest proteazą serynową, która w formie aktywnej degraduje aktywny czynnik V (przy współudziale heparyny) oraz VIII (przy współudziale białka S). Mutacja Leiden genu czynnika V prowadzi do powstania białka odpornego na działanie białka C.

    Kinazy białkowe – grupa kinaz, których substratami są białka. Enzymy te przeprowadzają reakcję fosforylacji cząsteczki specyficznego dla danej kinazy białka. Fosforylacja zwykle prowadzi do zmiany konformacji cząsteczki białka i, w konsekwencji, zmiany jego aktywności, zdolności do wiązania się z innymi białkami albo przemieszczenia cząsteczki w obrębie komórki. Do 30% białek podlega regulacji na tej drodze; większość szlaków metabolicznych komórki, zwłaszcza sygnalizacyjnych, angażuje enzymy z grupy kinaz białkowych. W ludzkim genomie zidentyfikowano kilkaset genów kodujących sekwencje aminokwasowe kinaz białkowych (około 2% wszystkich genow). Funkcja kinaz białkowych podlega wielostopniowej regulacji, również angażującej kinazy i fosfatazy białkowe; fosforylacja białka kinazy może zwiększać albo zmniejszać jej aktywność. Białka aktywatorowe lub inhibitorowe przez przyłączanie się do domen regulatorowych kinaz również wpływają na ich aktywność. Niektóre kinazy posiadają domenę regulatorową, którą same mogą fosforylować (autofosforylacja albo cis-fosforylacja). Białka fibrylarne (białka włókniste, włókienkowe lub włókiennikowe, skleroproteiny, skleroproteidy, albuminoidy) - białka proste o strukturze włókienkowej stanowiące podstawowy materiał budulcowy organizmów zwierzęcych.

    Białorutenizacja − proces nadawania cech kultury białoruskiej osobom lub zbiorowościom funkcjonującym wcześniej w ramach innych kultur, umacniania pozycji kultury i języka białoruskiego w danej dziedzinie lub na określonym obszarze. W latach 20. XX wieku stanowiła ona część oficjalnej polityki władz Białoruskiej SRR. Współcześnie, zdaniem niektórych polskich badaczy, białorutenizacja objawia się określaniem elementów i dziedzictwa kultur nie-białoruskich na Białorusi jako elementy kultury białoruskiej. Remodeling chromatyny nazywany także rearanżacją chromatyny stanowi proces polegający na zmianie struktury chromatyny przy pomocy określonych kompleksów białkowych, którego celem jest regulacja ekspresji genów poprzez zmianę dostępności chromatyny dla czynników transkrypcyjnych. Pierwsze białka zdolne do remodelowania struktury przestrzennej chromatyny zostały odkryte na początku lat 90. XX wieku. Do chwili obecnej udało się dość dobrze zbadać budowę i mechanizm działania niektórych czynników białkowych biorących udział w tym procesie.

    Prenylacja (ang. prenylation, isoprenylation, lipidation) – potranslacyjna modyfikacja białek, polegająca na przyłączeniu do łańcucha polipeptydowego hydrofobowej reszty farnezylowej lub geranylogeranylowej. Uważa się, że grupy prenylowe umożliwiają zakotwiczenie białka do błon komórkowych, tak jak w przypadku kotwic GPI. Grupy prenylowe odgrywają także rolę w interakcjach białko-białko, za pośrednictwem specjalnych domen wiążących grupy prenylowe.

    Dodano: 19.01.2010. 12:15  


    Najnowsze