• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Niezwykły eksperyment na Wydziale Fizyki UW

    14.05.2010. 05:18
    opublikowane przez: Redakcja Naukowy.pl

    W pracowniach Wydziału Fizyki Uniwersytetu Warszawskiego (WF UW) naukowcy opracowali metody zapisu i odczytu informacji w pojedynczym atomie manganu. Przeprowadzony eksperyment może przyczynić się do budowy komputerów o ogromnych mocach obliczeniowych.

    Jak informuje Narodowe Laboratorium Technologii Kwantowych (NLTK) - w skład którego wchodzi m.in. UW - współczesne komputery stają się coraz szybsze dzięki miniaturyzacji: liczba tranzystorów w komputerowych procesorach podwaja się mniej więcej co półtora roku. Miniaturyzacji nie można jednak kontynuować w nieskończoność, na przeszkodzie staje ziarnista, atomowa struktura materii.


    Prace prowadzone przez naukowców z WF UW wykazały, że informację kwantową można z powodzeniem zapisać w pojedynczym atomie manganu, a następnie przetworzyć w nim i odczytać.

    "Dotarliśmy do fizycznego limitu rozmiarów elementów przetwarzających informację. Co więcej, przechowujemy ją za pomocą efektów kwantowych, które w przyszłości będzie można wykorzystać do budowy komputerów nowego typu, o wielkich mocach obliczeniowych" - informuje prof. Jan Gaj z Wydziału Fizyki UW.

    Współczesne komputery operują na klasycznych bitach. Każdy taki bit może przyjmować tylko dwa stany, którym przypisuje się umowne wartości "0" i "1". Komputer kwantowy będzie zawierał kubity, czyli bity kwantowe, które mogą znajdować się także w mieszaninie swych dwóch stanów (superpozycji).

    Jak zapewniają specjaliści z NLTK, mangan oferuje jeszcze ciekawsze możliwości. "Do przechowania informacji w atomie manganu wykorzystujemy jego spin, czyli cechę kwantową związaną z wirowaniem" - tłumaczy prof. Gaj.

    W jednym atomie manganu daje się zapisać więcej niż dwa, lecz mniej niż trzy bity informacji. Podobnie jak zwykły kubit, atom manganu może znajdować się w superpozycji swoich stanów. Gdyby taki stan udało się rozszerzyć na grupę atomów manganu, każdy kolejny atom zwielokrotniałby możliwości obliczeniowe komputera kwantowego.

    Jak podaje NLTK, komputer kwantowy z 10 atomów manganu w każdym kroku przetwarzałby ponad 60 milionów stanów, a zbudowany ze zwykłych kubitów zaledwie nieco ponad tysiąc. W tym czasie klasyczny komputer przetworzyłby tylko jeden stan z 1024 możliwych.

    By dobrze przygotować się do doświadczeń na pojedynczych atomach warszawscy naukowcy najpierw wyhodowali tzw. kropki kwantowe, czyli specjalne, powstające na drodze samoorganizacji struktury półprzewodnikowe wielkości miliardowych części metra. Są one wykonane z tellurku kadmu, otoczonego tellurkiem cynku. Kropki kwantowe są niekiedy nazywane "sztucznymi atomami", ponieważ uwięzione w nich elektrony emitują światło podobnie jak w atomach, w postaci fotonów o ściśle określonych energiach.

    Kropki kwantowe zostały wyhodowane na płytce półprzewodnika przez dr. Piotra Wojnara z grupy prof. Jacka Kossuta z Instytutu Fizyki Polskiej Akademii Nauk w Warszawie. Na rosnące w próżni kropki kwantowe dr Wojnar skierował tak słabą wiązkę atomów manganu, by na jak największej liczbie kropek osadzić po jednym atomie. Tak przygotowana płytka trafiła na Wydział Fizyki UW, gdzie naukowcy umieścili ją w optycznym układzie pomiarowym. Za jego pomocą można w kilka godzin odszukać kropki z pojedynczymi atomami manganu.

    Jak informuje NLTK, na pojedynczej płytce półprzewodnikowej powstaje wiele kropek kwantowych. Składają się one z tysięcy atomów, w każdym przypadku rozmieszczonych nieco inaczej. Każda kropka emituje fotony o energiach charakterystycznych tylko dla siebie. Efekt ten jest niezwykle istotny, bo pozwala fizykom wybrać jedną, konkretną kropkę kwantową i nawiązać z nią kontakt. Emitowane przez kropkę fotony niosą informację o stanie uwięzionych w niej elektronów.

    "Jeśli elektrony w kropce kwantowej oddziaływały z atomem manganu, w emitowanym świetle pojawi się sześć charakterystycznych pików odpowiadających sześciu stanom spinowym manganu. Gdy jeden z pików dominuje oznacza to, że atom manganu najczęściej znajduje się w odpowiadającym mu stanie" - podaje NLTK.

    Subtelniejszych metod wymaga przełączenie manganu do wybranego stanu spinowego. W tym celu na płytce półprzewodnikowej naukowcy z WF UW wyszukują dwie kropki, które powstały tak blisko siebie, że tworzą parę. Za pomocą światła laserowego można wówczas "wrzucić" elektron o określonym spinie do jednej kropki, skąd przetuneluje do drugiej, z atomem manganu, i zacznie z nim oddziaływać. Powtarzając ten proces wielokrotnie, fizycy potrafią wprowadzić atom manganu w wybrany stan spinowy. W nowym stanie atom przebywa przez mniej więcej jedną tysięczną sekundy.

    "Milisekunda to niewiele, trzeba jednak pamiętać, że potrafimy w tym czasie zmienić stan atomu nawet kilkaset tysięcy razy. To wystarczy, aby przeprowadzić cały szereg operacji" - zaznacza prof. Gaj.

    Badania będzie można prowadzić z jeszcze większą precyzją dzięki wyposażeniu dostarczanemu przez NLTK: nowym femtosekundowym laserom impulsowym, nadprzewodzącemu magnesowi wytwarzającemu pole magnetyczne silniejsze od generowanego przez magnesy działające w tunelu akceleratora LHC i strojonemu oscylatorowi optycznemu, za pomocą którego precyzyjnie dopasowuje się częstotliwość światła laserowego do częstotliwości drgań elektronu w danej kropce kwantowej.

    "Dzięki tak nowoczesnej aparaturze będziemy mogli kontynuować prace badawcze na najwyższym poziomie i przeprowadzać doświadczenia, których przed nami nie zrobił nikt na świecie" - podkreśla prof. Gaj.

    ***

    Narodowe Laboratorium Technologii Kwantowych to konsorcjum złożone z wiodących w kraju jednostek naukowych zajmujących się badaniami w zakresie technologii kwantowych, w tym informatyki kwantowej, inżynierii kwantowej oraz dziedzin pokrewnych. W skład NLTK wchodzą: Uniwersytet Warszawski, Politechnika Wrocławska, Instytut Fizyki PAN, Uniwersytet Mikołaja Kopernika w Toruniu, Uniwersytet Jagielloński, Uniwersytet Gdański, Uniwersytet Łódzki i Centrum Fizyki Teoretycznej PAN.

    W pięciu z ośmiu instytucji tworzących konsorcjum NLTK (UW, PWr, IF PAN, UMK, UJ) jest realizowany projekt o tej samej nazwie, którego celem jest utworzenie i wyposażenie członkowskich jednostek naukowych w sprzęt niezbędny do prowadzenia wspólnych badań naukowych oraz badawczo-rozwojowych na światowym poziomie. EKR

    PAP - Nauka w Polsce

    agt/ kap/


    Czy wiesz ĹĽe...? (beta)
    Bramki kwantowe – proste elementy wykonujące podstawowe obliczenia przeprowadzane przez algorytmy kwantowe. Bramki kwantowe stanowią podstawowe operacje realizowane przez komputery kwantowe i służą do przetwarzania informacji kwantowej. Bramki kwantowe na schematach obwodów kwantowych oznaczamy za pomocą ramek, a w obliczeniach stosujemy postać macierzy unitarnych. Główna liczba kwantowa (n) - pierwsza z liczb kwantowych opisujących układ kwantowy określająca energię układu, np. energię elektronów w atomie. Przyjmuje ona wartości liczb naturalnych n = 1, 2, 3, 4, 5, 6, 7... Stany kwantowe o tej samej wartości głównej liczby kwantowej tworzą powłokę elektronową, zwaną poziomem energetycznym. Powłoki te oznacza się kolejno K, L, M, N, O, P, Q. Powłoce K odpowiada n = 1, powłoce L odpowiada n = 2... Magnetyczna spinowa liczba kwantowa (ms)- może przyjmować dwie wartości: -½ i ½. Elektrony, rozróżniające się tylko wartością tej liczby kwantowej, są opisywane tym samym orbitalem w atomie. Często o elektronach różniących się znakiem magnetycznej kwantowej liczby spinowej mówi się, że mają przeciwne spiny.

    Jan Antoni Gaj (ur. w 1943, zm. 19 lutego 2011 w Warszawie) – polski fizyk, specjalizujący się w fizyce ciała stałego i fizyce półprzewodników, profesor Wydziału Fizyki Uniwersytetu Warszawskiego. Zapoczątkował spektroskopię optyczną półprzewodników półmagnetycznych. Zajmował się badaniami związanymi ze spinem nośników ładunku i ekscytonów w półprzewodnikach i w niskowymiarowych strukturach półprzewodnikowych takich jak np. kropki kwantowe. Siarczan manganu(III), Mn2(SO4)3 – nieorganiczny związek chemiczny, sól kwasu siarkowego i manganu trójwartościowego.

    Artur Ekert (ur. 19 września 1961 we Wrocławiu) – fizyk prowadzący badania w zakresie podstaw mechaniki kwantowej oraz kwantowego przetwarzania informacji. Obecnie zajmuje on stanowiska profesora fizyki kwantowej na wydziale Matematyki Uniwersytetu Oksfordzkiego a także profesora honorowego Lee Kong Chian (Lee Kong Chian Centennial Professor) na Narodowym Uniwersytecie Singapuru oraz dyrektora Centrum Technologii Kwantowych działającego w ramach tego uniwersytetu. Konfiguracja elektronowa (struktura elektronowa) pierwiastka – uproszczony opis atomu polegający na rozmieszczeniu elektronów należących do atomów danego pierwiastka na poszczególnych powłokach, podpowłokach i orbitalach. Każdy elektron znajdujący się w atomie opisywany jest przy pomocy zbioru liczb kwantowych.

    Braunsztyn – najważniejsza ruda manganu zawierająca głównie tlenek manganu(IV) (MnO2). Występuje razem z rudami żelaza (wytapia się je razem, otrzymując żelazomangan). Minerały: piroluzyt, polionit, psylomelan. Tlenek manganu(IV) (ditlenek manganu), MnO2nieorganiczny związek chemiczny z grupy tlenków, w którym mangan występuje na IV stopniu utlenienia.

    Fluorek manganu(III), MnF3 – nieorganiczny związek chemiczny, sól kwasu fluorowodorowego i manganu trójwartościowego.

    Ultrazimne atomy – termin używany do opisania gazu atomów o temperaturach bliskich 0 kelwina (zera bezwzględnego). Za graniczną temperaturę poniżej, której układ nazywamy ultrazimnym przyjmuje się 1 mK, podczas gdy zimnym nazywamy gaz, którego temperatura jest mniejsza niż 1 K. Temperatury otrzymywanych powszechnie w laboratoriach ultrazimnych gazów atomów mieszczą się pomiędzy 1 μK a 1 nK (1 × 10 – 1 × 10 K), przy czym udało się również otrzymać gazy o temperaturach poniżej 500 pK (500 × 10K). W tak niskich temperaturach klasyczny opis gazów zawodzi, ponieważ zjawiska kwantowe zaczynają odgrywać dominującą rolę, a co za tym idzie, do poprawnego opisu badanych układów należy używać mechaniki kwantowej. Kwantowa natura w reżimie ultraniskich temperatur przejawia się m.in. występowaniem kondensacji Bosego-Einsteina w przypadku atomów bozonowych lub zdegenerowanych gazów Fermiego, kiedy atomy są fermionami. Gazy ultrazimnych atomów znalazły też zastosowania w optyce nieliniowej, dokładnych pomiarach kwantowych właściwości pojedynczych atomów, inżynierii stanów kwantowych, precyzyjnej spektroskopii i zegarach atomowych.

    Wodorotlenek manganu(II), Mn(OH)2 – nieorganiczny związek chemiczny, wodorotlenek manganu na stopniu utlenienia II. Występuje naturalnie jako minerał pirochroit. Siarczan manganu(II) (nazwa Stocka: siarczan(VI) manganu(II)), MnSO4nieorganiczny związek chemiczny z grupy siarczanów, sól kwasu siarkowego i manganu na II stopniu utlenienia. Zazwyczaj występuje jako sól jednowodna (MnSO4·H2O), ponadto znany jest także tetrahydrat, pentahydrat i heptahydrat.

    Pojęcie liczby kwantowej pojawiło się w fizyce wraz z odkryciem mechaniki kwantowej. Okazało się, że właściwie wszystkie wielkości fizyczne mierzone w mikroświecie atomów i cząsteczek podlegają zjawisku kwantowania, tzn. mogą przyjmować tylko pewne ściśle określone wartości. Na przykład elektrony w atomie znajdują się na ściśle określonych orbitach i mogą znajdować się tylko tam, z dokładnością określoną przez zasadę nieoznaczoności. Z drugiej strony każdej orbicie odpowiada pewna energia. Bliższe badania pokazały, że w podobny sposób zachowują się także inne wielkości np. pęd, moment pędu czy moment magnetyczny (kwantowaniu podlega tu nie tylko wartość, ale i położenie wektora w przestrzeni albo jego rzutu na wybraną oś). Wobec takiego stanu rzeczy naturalnym pomysłem było po prostu ponumerowanie wszystkich możliwych wartości np. energii czy momentu pędu. Te numery to właśnie liczby kwantowe.

    Dodano: 14.05.2010. 05:18  


    Najnowsze