• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Nowy model opisu jąder atomowych

    02.03.2015. 20:57
    opublikowane przez: Redakcja

    Nowy model opisu jąder atomowych, przedstawiony przez fizyka z Wydziału Fizyki Uniwersytetu Warszawskiego, pozwala dokładniej przewidywać właściwości egzotycznych izotopów powstających w wybuchach supernowych oraz tworzących się w kontrolowanych reakcjach zachodzących we wnętrzach nowoczesnych reaktorów nuklearnych.


    Współczesna aparatura badawczo-pomiarowa nie jest w stanie wytworzyć i zarejestrować wielu egzotycznych izotopów powstających w wybuchach supernowych i we wnętrzach reaktorów jądrowych. W efekcie znaczna liczba jąder atomowych wciąż pozostaje nieznana. Przewidywanie niektórych ich właściwości będzie teraz łatwiejsze – dzięki nowemu modelowi opisu jąder atomowych, zaprezentowanemu niedawno przez dr. Krzysztofa Miernika z Wydziału Fizyki Uniwersytetu Warszawskiego (FUW).

    „W czasach, gdy wykaz współtwórców publikacji z zakresu fizyki subatomowej bywa porównywalny do zasadniczej treści artykułu, praca pojedynczego autora to prawdziwa rzadkość. W tym przypadku to jeszcze większy rarytas, bo nowy model teoretyczny zaprezentował fizyk doświadczalny”, podkreśla prof. dr hab. Tomasz Matulewicz, dyrektor Instytutu Fizyki Doświadczalnej FUW.

    Współczesne modele teoretyczne jąder atomowych można podzielić na dwie grupy: mikroskopowe i fenomenologiczne. Modele mikroskopowe próbują opisać jądra za pomocą równań mechaniki kwantowej, co udaje się tylko w przypadku jąder ze stosunkowo niewielką liczbą protonów i neutronów. Natomiast modele fenomenologiczne nie wnikają w naturę zjawisk fizycznych, lecz starają się znaleźć bardziej ogólne, statystyczne zależności między różnymi jądrami.

    „Opisy wychodzące od najbardziej podstawowych zasad kwantowo-mechanicznych są możliwe do wyprowadzenia tylko dla prostych jąder, liczących nie więcej niż kilkanaście cząstek, natomiast modele statystyczne działają świetnie, tyle że na naprawdę dużych zbiorach danych. No i mamy problem, bo liczba protonów i neutronów w większości jąder atomowych jest pośrednia: dostatecznie duża, by praktycznie uniemożliwić dokładny opis, i jednocześnie tak mała, że opis statystyczny pozostaje nieprecyzyjny”, wyjaśnia dr Miernik.

    Współczesna fizyka zna cztery oddziaływania fundamentalne: grawitacyjne, elektromagnetyczne, jądrowe silne i jądrowe słabe. Grawitacja działa między obiektami mającymi masę i kształtuje Wszechświat w skalach kosmicznych. Elektromagnetyzm wiąże ujemnie naładowane elektrony z dodatnimi jądrami atomowymi tworząc atomy, które możemy obserwować dzięki jego nośnikom: fotonom. Oddziaływania jądrowe silne „sklejają” kwarki w protony i neutrony,  podstawowe składniki jąder atomowych. Na tym tle oddziaływania jądrowe słabe wydają się mało znaczące.

    „Nic bardziej mylnego! Oddziaływania jądrowe słabe pełnią bardzo ważną rolę: to dzięki nim jedne cząstki jądrowe mogą się zmieniać w inne. Gdyby nie oddziaływania słabe, we Wszechświecie nie byłoby wielu pierwiastków”, stwierdza dr Miernik.

    Podstawowymi fabrykami pierwiastków we Wszechświecie są gwiazdy. Zachodzące w nich reakcje termojądrowe nie są jednak w stanie wytworzyć jąder atomowych cięższych od żelaza. Na szczęście dzięki oddziaływaniom słabym w jądrach dochodzi niekiedy do przemiany beta minus: neutron zmienia się w proton i dwie inne cząstki, elektron i antyneutrino elektronowe, które szybko „uciekają” z jądra. Wskutek przemian beta minus liczba protonów w jądrze atomowym się zwiększa, co za każdym razem oznacza narodziny nowego pierwiastka.

    „Ciekawe rzeczy dzieją się nie tylko w trakcie przemiany beta, ale także po niej. Nowe jądro może być wzbudzone energetycznie. Jeśli ma zbliżone liczby neutronów i protonów, prawdopodobnie  pozbędzie się nadmiaru energii po prostu emitując promieniowanie gamma. Jeśli jednak w jądrze jest duży nadmiar neutronów, może pozbyć się energii emitując neutron. Mamy więc najpierw przemianę beta, a po niej opóźnioną emisję neutronu”, wyjaśnia dr Miernik.

    Opóźniona emisja neutronów z jąder atomowych to proces o istotnym znaczeniu w astrofizyce. Podczas wybuchów supernowych uwalniane są ogromne ilości neutronów, z których część jest wychwytywana przez jądra atomowe. Jedna z głównych ścieżek produkcji nowych pierwiastków, odpowiedzialna za powstanie mniej więcej połowy izotopów cięższych od żelaza, prowadzi wówczas właśnie przez przemianę beta minus połączoną z emisją neutronów opóźnionych.

    „Brak wiedzy o egzotycznych jądrach atomowych, tworzących się w wybuchach supernowych, to prawdziwa przeszkoda w pełnym zrozumieniu zachodzących wówczas zjawisk”, mówi dr Miernik.

    Opóźniona emisja neutronów ma znaczenie także na Ziemi: umożliwia relatywnie łatwą kontrolę przebiegu reakcji jądrowych w reaktorach atomowych. Gdyby podczas rozpadu uranu wszystkie neutrony uwalniały się natychmiast, każda reakcja byłaby łańcuchowa i prowadziła do eksplozji nuklearnej. Na szczęście świat działa inaczej i choć w rozpadach uranu tylko jeden neutron na kilkadziesiąt jest emitowany z opóźnieniem, ta niewielka liczba wystarcza do kontrolowania reakcji.

    Wskutek rozpadu uranu może powstać ok. 270 jąder atomowych emitujących neutrony opóźnione. Pomiary ich własności są jednak trudne. Z uwagi na krótki czas życia, większość tych jąder atomowych trzeba wytwarzać sztucznie. Co więcej, detekcja neutronów, niosących informację o przebiegu rozpadu, wymaga użycia drogich i mało wydajnych detektorów. W efekcie współczesna fizyka zna własności niewiele ponad 1/3 rodzajów jąder atomowych z tej grupy.

    „Spójrzmy okiem konstruktora. Jeśli w reaktorze tworzą się jakieś jądra atomowe, warto przecież wiedzieć, jakie – i jak się zachowują. Nowym jądrem może być na przykład izotop kryptonu, czyli gaz szlachetny, ale równie dobrze może to być rubid, metal alkaliczny, który będzie zachowywał się zupełnie inaczej wewnątrz reaktora.”, mówi dr Miernik.

    Model emisji neutronów opóźnionych, zaproponowany przez dr. Miernika, jest rozwinięciem modeli bazujących na statystyce. Kluczowym pomysłem było stworzenie systematyki na podstawie jednego z parametrów, nazywanego gęstością poziomów jądrowych, w taki sposób, aby przewidywania modelu jak najlepiej zgadzały się z pomiarami. Opis skonstruowany wokół tej idei pozwala usystematyzować dotychczas znane jądra atomowe i przewidywać własności egzotycznych, jeszcze niebadanych jąder atomowych.

    Jak każdy nowy model, także i ten będzie wymagał ciągłej weryfikacji eksperymentalnej. Na razie model z powodzeniem przeszedł wstępny test, w którym sztucznie ograniczono liczbę dotychczas znanych jąder atomowych i porównano przewidywania, dokonane na podstawie ograniczonego zestawu danych, ze znanymi wartościami parametrów zmierzonych dla odrzuconych jąder. Pierwsze pomiary właściwości nowych jąder atomowych, pozwalające zweryfikować poprawność modelu, dr Miernik spodziewa się otrzymać dzięki eksperymentom, które niedługo rozpoczną się w japońskim instytucie badawczym RIKEN Nishina Center.


    Fizyka i astronomia na Uniwersytecie Warszawskim pojawiły się w 1816 roku w ramach ówczesnego Wydziału Filozofii. W roku 1825 powstało Obserwatorium Astronomiczne. Obecnie w skład Wydziału Fizyki UW wchodzą Instytuty: Fizyki Doświadczalnej, Fizyki Teoretycznej, Geofizyki, Katedra Metod Matematycznych oraz Obserwatorium Astronomiczne. Badania pokrywają niemal wszystkie dziedziny współczesnej fizyki, w skalach od kwantowej do kosmologicznej. Kadra naukowo-dydaktyczna Wydziału składa się z ok. 200 nauczycieli akademickich, wśród których jest 88 pracowników z tytułem profesora. Na Wydziale Fizyki UW studiuje ok. 1000 studentów i ponad 170 doktorantów.


    PUBLIKACJE NAUKOWE:

    „ß-delayed multiple-neutron emission in the effective density model”; K. Miernik; Physical Review C 90, 054306 (2014); DOI: 10.1103/PhysRevC.90.054306

    inf. prasowa FUW


    Czy wiesz ĹĽe...? (beta)
    Jądra zwierciadlane - para jąder atomowych o jednakowej liczbie masowej, takich że liczba protonów (Z) jednego z jąder jest równa liczbie neutronów (A-Z) w drugim jądrze. Jądra takie wykazują bardzo podobną strukturę poziomów energetycznych, co wynika z dominującej roli w jądrze oddziaływań silnych, które tylko w bardzo niewielkim stopniu rozróżniają neutrony od protonów. Siły jądrowe - siły, które wiążą ze sobą protony i neutrony w jądrze atomowym. Są szczególnym przypadkiem oddziaływań silnych. Nukleosynteza – proces, w którym powstają nowe jądra atomowe w wyniku łączenia się nukleonów, czyli protonów i neutronów, lub istniejących już jąder atomowych i nukleonów. Obecny skład izotopowy Wszechświata jest głównie skutkiem naturalnej nukleosyntezy.

    Rozpad dwuprotonowy – przemiana jądra atomowego, podczas której emitowane są jednocześnie dwa protony ze stanu podstawowego. Jest to bardzo rzadki proces jądrowy, zachodzący dla nielicznych jąder protono-nadmiarowych (zawierających więcej protonów niż neutronów). Konkurencją dla tego rozpadu jest przemiana beta plus. Należy go wyraźnie odróżnić od dwóch kolejno zachodzących emisji protonów; jest on możliwy do zaobserwowania tylko wtedy, gdy pojedynczy rozpad protonowy jest wzbroniony z powodów energetycznych. Reakcje jądrowe to przemiany jąder atomowych wywołane ich oddziaływaniem wzajemnym w odległości odpowiadającej zasięgowi sił jądrowych bądź też ich oddziaływaniem z cząstkami elementarnymi lub fotonami. W ich wyniku powstają jądra atomowe innych pierwiastków, innych izotopów tego samego pierwiastka lub jądra tego samego izotopu danego pierwiastka w innym stanie energetycznym. Oddziaływania jądrowe prowadzące do reakcji jądrowych nazywane są często zderzeniami.

    Moderator – substancja służąca do zmniejszenia energii kinetycznej (prędkości) neutronów, aż do osiągnięcia przez nie stanu tzw. neutronów termicznych. Powolne neutrony znacznie wydajniej powodują rozszczepienie jąder atomowych w materiale paliwa jądrowego. Reaktor prędki, reaktor na prędkich neutronach (i jego podtyp reaktor powielający) – reaktor, w którym nie ma moderatora, ponieważ reakcje rozszczepienia wywoływane są przez neutrony prędkie. Jako paliwo jądrowe stosuje się w nich mieszaninę tlenków plutonu i uranu. Paliwo jądrowe musi być silniej wzbogacone, niż paliwo dla reaktorów powolnych. W czasie pracy reaktora z normalnie nieużytecznego izotopu uranu U powstają, w procesie pochłonięcia neutronów i następujących rozpadów beta izotopy plutonu (głównie Pu). Pluton może zostać następnie wydzielony i użyty ponownie jako paliwo. Reaktor powielający to reaktor, który wytwarza w ten sposób więcej plutonu, niż go zużywa.

    Jądro atomowe – konglomerat cząstek elementarnych będący centralną częścią atomu zbudowany z jednego lub więcej protonów i neutronów, zwanych nukleonami. Jądro stanowi niewielką część objętości całego atomu, jednak to w jądrze skupiona jest prawie cała masa. Przemiany jądrowe mogą prowadzić do wyzwolenia ogromnych ilości energii. Niewłaściwe ich wykorzystanie może stanowić zagrożenie.

    Dodano: 02.03.2015. 20:57  


    Najnowsze