• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Polscy fizycy: niedoskonałość splątania cząstek nie przeszkodzi kryptografii kwantowej

    04.02.2011. 00:33
    opublikowane przez: Redakcja Naukowy.pl

    Eksperyment polskich fizyków pokazał, że nawet niedoskonałe splątanie kwantowe może znaleźć zastosowanie w szyfrowaniu kwantowym, gwarantującym całkowite zabezpieczenie przed podsłuchem - informuje Wydział Fizyki Uniwersytetu Warszawskiego.

    W czasach masowej wymiany danych poufność transmitowanych informacji ma podstawowe znaczenie. Całkowitą prywatność transmisji, gwarantowaną przez fundamentalne cechy cząstek kwantowych, może zapewnić kryptografia kwantowa.

    Jak napisano w komunikacie Wydziału Fizyki UW przekazanym PAP, obecnie podczas szyfrowania kwantowego stosuje się źródła cząstek, w których pewne cechy cząstek są ze sobą ściśle i idealnie związane - maksymalnie splątane.

    Grupa fizyków współpracujących w ramach Narodowego Laboratorium Technologii Kwantowych po raz pierwszy wykazała doświadczalnie, że do bezpiecznej transmisji klucza kryptograficznego można wykorzystać także pozornie nieprzydatne źródła, w których splątanie cząstek jest znacząco zaszumione.

    Klucz kryptograficzny - wyjaśniają naukowcy z UW - to przypadkowy ciąg liczb, przez nadawcę używany do szyfrowania informacji, przez odbiorcę do ich odszyfrowania. Aby obie strony mogły poufnie wymieniać dane, muszą dysponować tym samym, znanym tylko im kluczem. Kryptografię kwantową stosuje się obecnie właśnie w tym celu: do bezpiecznego przekazywania klucza między nadawcą a odbiorcą.

    "W 1991 roku polski fizyk Artur Ekert opracował protokół E91 kwantowej dystrybucji klucza, wykorzystujący splątane cząstki kwantowe. Splątanie oznacza, że pewne cechy cząstek są wzajemnie powiązane. Na przykład w krysztale nieliniowym można wytworzyć pary fotonów o splątanych polaryzacjach. Oznacza to, że jeśli nadawca dla swojego fotonu zaobserwuje polaryzację w płaszczyźnie pionowej, ma pewność, że drugi foton był u odbiorcy spolaryzowany poziomo. Analogiczne zjawisko zajdzie dla dowolnej innej pary prostopadłych kierunków. Dla nadawcy i odbiorcy rezultaty ich własnych pomiarów wyglądają na całkowicie przypadkowe. Jeśli jednak obaj porównają wyniki, natychmiast zauważą, że istnieją między nimi korelacje wynikające ze splątania. Ten mechanizm wykorzystuje kryptografia kwantowa" - czytamy w komunikacie.

    Gdyby ktoś próbował podsłuchiwać przekaz, zniszczyłby splątanie i doskonałe korelacje między wynikami u nadawcy i odbiorcy zniknęłyby - szpieg zostałby natychmiast wykryty - tłumaczą uczeni.

    Jak zauważają, opisana sytuacja to przypadek idealny, gdy splątanie między obiektami jest maksymalne. W rzeczywistości splątanie często nie jest maksymalne, korelacje między wynikami nie są doskonałe i coraz trudniej ustalić, czy przekaz był podsłuchiwany. W takiej sytuacji przeprowadza się "destylację splątania" czyli procedurę, która pozwala otrzymać ze stanów zaszumianych pewną liczbę stanów o splątaniu maksymalnym.

    "Istnieje jednak wiele stanów, z których destylacja splątania jest niemożliwa lub bardzo niewydajna. Przez długi czas stany te były traktowane jako nieprzydatne dla kryptografii kwantowej. Jednak w 2005 roku w Gdańsku - przypominają w komunikacie przedstawiciele Wydziału Fizyki UW - fizycy z rodziny Horodeckich i Jonathan Oppenheim na drodze teoretycznej wykazali, że w pewnych sytuacjach klucz kryptograficzny można wydajnie przesłać mimo trudności z destylacją splątania"

    Naukowcy współpracujący w ramach Narodowego Laboratorium Technologii Kwantowych sprawdzili przypuszczenie gdańskich fizyków w starannie zaplanowanym eksperymencie.

    Zrealizował go zespół koordynowany przez profesorów Konrada Banaszka z Wydziału Fizyki Uniwersytetu Warszawskiego (FUW) i Pawła Horodeckiego z Wydziału Fizyki Technicznej i Matematyki Stosowanej Politechniki Gdańskiej (JPG). Za stronę eksperymentalną odpowiadał dr Krzysztof Dobek, przebywający na stażu naukowym w Krajowym Laboratorium Fizyki Atomowej, Molekularnej i Optycznej przy Uniwersytecie Mikołaja Kopernika w Toruniu.

    "W doświadczeniu korzystano z lasera, wysyłającego z dużą częstotliwością krótkie impulsy światła do kryształu nieliniowego. Co pewien czas z kryształu wylatywały cząstki splątane. Najczęściej były to pary fotonów (do 6 tys. na sekundę), znacznie rzadziej czwórki (zaledwie dwie na sekundę).Aparaturę elektroniczną skonfigurowano w taki sposób, aby rejestrowała polaryzację tylko czwórek fotonów. W trwającym cztery doby eksperymencie zarejestrowano kilkaset tysięcy takich zdarzeń" - czytamy w komunikacie.

    Analizą danych i teoretyczną rekonstrukcją zarejestrowanych stanów kwantowych zajmowali się dr Rafał Demkowicz-Dobrzański i mgr Michał Karpiński, obaj z FUW. "Dokładna analiza danych z eksperymentu była w tym przypadku szczególnie istotna. Musieliśmy mieć statystyczną pewność, że wygenerowany stan kwantowy był rzeczywiście tym stanem, o który nam chodziło" - wyjaśnia dr Demkowicz-Dobrzański. Wykazano, że mimo zaszumienia splątania, w każdej czwórce fotonów można było bezpiecznie przesłać średnio 0,7 bita klucza kryptograficznego.

    Według badaczy, eksperyment może mieć istotne znaczenie dla praktycznej kryptografii kwantowej. Obecnie przy szyfrowaniu stosuje się źródła stanów czystych, maksymalnie splątanych. Doświadczenie polskich fizyków pokazuje, że przyszłe źródła splątanych cząstek będzie można wykorzystać do przesyłania kwantowego klucza kryptograficznego nawet w sytuacji, gdy generowane splątanie jest zaszumione i trudne do destylacji.

    "Doświadczalnie udowodniliśmy, że o przydatności źródeł splątania w kryptografii nie musi decydować ich perfekcyjność. Jeśli nowe źródło będzie wytwarzać splątanie z szumem, lecz okaże się bardziej wydajne lub tańsze od obecnych, nadal będzie można je z powodzeniem wykorzystać" - podsumowuje prof. Banaszek.

    Artykuł opisujący eksperyment i analizę danych ukazał się w najnowszym wydaniu znanego czasopisma naukowego "Physics Review Letters". Badania przeprowadzono w ramach projektów CORNER i Q-ESSENCE finansowanych ze środków 7. Programu Ramowego Unii Europejskiej, przy wsparciu programu TEAM Fundacji na rzecz Nauki Polskiej oraz Ministerstwa Nauki i Szkolnictwa Wyższego. LT

     

    PAP - Nauka w Polsce

    agt/bsz


    Czy wiesz ĹĽe...? (beta)

    W kwantowej teorii informacji kodowanie supergęste to technika używana do wysyłania dwóch bitów klasycznej informacji przy użyciu tylko jednego kubitu z pomocą splątania.

    Harald Weinfurter (ur. 14 maja 1960 w Steyr) – profesor fizyki w Uniwersytetecie Ludwiga Maximiliana (niem. Ludwig-Maximilians-Universität München, LMU, Uniwersytet Monachijski). Specjalista w dziedzinie eksperymentów dotyczących podstaw mechaniki kwantowej, a w szczególności: kwantowej interferometrii ze skorelowanymi fotonami, kwantowego splątania, nierówności Bella, kwantowej komunikacji i przetwarzania informacji, kwantowej kryptografii i metrologii.

    Inkoherencja (łac. incoherentio), rzadziej określana też jako splątanie - zaburzenie myślenia, wyrażające się w rozrywaniu związków pomiędzy członami myślenia. Zaliczana jest do zaburzeń struktury myślenia i skutkuje utratą spójności wypowiedzi w obrębie zdań. Dla zobrazowania dezorganizacji wypowiedzi używa się również określenia "sałata słowna". Może wystąpić w przebiegu ostrych psychoz z zaburzeniami świadomości np. w zespole splątaniowym (amentywnym), w schizofrenii o ostrym przebiegu.

    Teleportacja kwantowa (QT z ang. quantum teleportation) – w kwantowej teorii informacji technika pozwalająca na przeniesienie stanu kwantowego na dowolną odległość z wykorzystaniem stanu splątanego.

    Zespół splątaniowy, zespół amentywny (określene też jako splątanie, amencja) – zaburzenia świadomości o etiologii egzogennej przejawiające się głębokimi zmianami świadomości. Zwykle jest to przejaw ciężkiej dysfunkcji mózgu. Występuje w przebiegu niewydolności krążenia mózgowego, infekcjach, zatruciach, zaburzeniach metabolicznych (cukrzyca, uszkodzenie wątroby, nerek), czasem jako powikłanie przebiegu psychoz endogennych (mania, katatonia).

    Stan splątany – rodzaj skorelowanego stanu kwantowego dwóch lub więcej cząstek lub innych układów kwantowych. Ma on niemożliwą w fizyce klasycznej cechę polegającą na tym, że stan całego układu jest lepiej określony niż stan jego części.

    Splądrowanie Rzymu (846)Jeden z wielu przypadków splądrowania Rzymu. To z roku 846 było jedynym muzułmańskim złupieniem stolicy kościoła chrześcijańskiego.

    Dodano: 04.02.2011. 00:33  


    Najnowsze