• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Polscy naukowcy pomagają modernizować kompleks akceleratorów w CERN-ie

    27.01.2010. 19:14
    opublikowane przez: Piotr aewski-Banaszak

    Naukowcy z Polski pomagają zwiększać wydajność Wielkiego Zderzacza Hadronów (LHC). Do Europejskiej Organizacji Badań Jądrowych CERN pod Genewą z Instytutu Problemów Jądrowych w Świerku (IPJ) wyjechał właśnie buncher - urządzenie, które w przyszłości będzie odgrywało istotną rolę na pierwszym etapie rozpędzania cząstek dla akceleratora LHC - informuje rzecznik IPJ, dr Marek Pawłowski.

    Jak zapowiada rzecznik IPJ, buncher w przyszłości będzie pierwszym etapem rozpędzania protonów w kaskadzie akceleratorów zasilającej Wielki Zderzacz Hadronów.
    "Aby Wielki Zderzacz Hadronów mógł działać, potrzebny jest cały kompleks akceleratorów stopniowo rozpędzających cząstki do coraz większych energii. Wszystko zaczyna się od wodoru, którego atomy składają się z jednego protonu i jednego elektronu. Atomy te raz na około dziewięć godzin są pobierane z niewielkiej butli i jonizowane, czyli +odzierane+ z elektronów" - tłumaczy dr Pawłowski.

    Jak wyjaśnia, otrzymane w ten sposób protony zostają skierowane do akceleratora liniowego Linac 2, gdzie rozpędza się je mniej więcej do 30 proc. prędkości światła. Następnie trafiają do akceleratora PS Booster i tu ich energia wzrasta niemal 30-krotnie. Z Boostera protony są przekazywane do Synchrotronu Protonowego PS, a potem do Supersynchrotronu Protonowego SPS. Na każdym etapie zwiększając energię ok. 20 razy. Niecałe pięć minut po opuszczeniu butli cząstki są wreszcie wpuszczane do wnętrza LHC. Każdego dnia w ten sposób rozpędza się dwa nanogramy wodoru.

    Choć po awarii w 2008 roku i ponownym uruchomieniu w listopadzie 2009 r. LHC wciąż znajduje się w fazie rozruchowej i jeszcze nie wszedł w docelowy tryb pracy, to fizycy już myślą o jego modernizacji.

    "Wydajność akceleratora LHC ściśle zależy od tego, co dzieje się na początkowych etapach przyspieszania cząstek. Z tego powodu w pierwszej fazie modernizacji systemu LHC akcelerator Linac 2 zostanie zastąpiony bardziej wydajnym przyspieszaczem Linac 4" - informuje rzecznik IPJ.

    Jak opisuje, buncher to pierwszy stopień przyspieszający w Linacu 4. Urządzenie ma kształt zbliżony do walca o średnicy ok. 60 cm i wysokości ok. 30 cm. Jego miedziane ściany otaczają wnękę o bardzo precyzyjnie zaprojektowanym kształcie. Wewnątrz wnęki drga pole elektromagnetyczne podobne do używanego w kuchence mikrofalowej. Pole to nie tylko przyspiesza znajdujące się w nim protony, ale przede wszystkim grupuje je w paczki (ang. bunch). Grupowanie jest niezbędne, ponieważ na dalszych etapach cząstki są przyspieszane w oscylującym polu mikrofalowym.

    "Drgania pola elektrycznego zachodzą jednak w obu kierunkach, co oznacza, że w jednej fazie cząstki byłyby przyspieszane, ale w następnej zostałyby spowolnione. Paczki pozwalają wstrzelić się precyzyjnie w te miejsca, gdzie pole pomaga w rozpędzaniu protonów" - wyjaśnia dr Paweł Krawczyk, dyrektor Zakładu Aparatury Jądrowej IPJ, w którym powstał buncher.

    Obróbkę mechaniczną elementów bunchera wykonał zespół pod kierunkiem Andrzeja Polaka. Urządzenie zmontowano i uruchomiono w pracowni kierowanej przez Michała Matusiaka, a strojenie mikrofalowe przeprowadził Marcin Wojciechowski.

    "Rezultatem zastąpienia starego akceleratora liniowego przez Linac 4 z polskim buncherem będzie dwukrotny wzrost jasności wiązek wprowadzanych do LHC, a tym samym większa liczba zderzeń między protonami. Już za dwa lata, po uruchomieniu Linaca 4, naukowcy uczestniczący w eksperymentach przy Wielkim Zderzaczu Hadronów będą mogli efektywniej obserwować zjawiska zachodzące w świecie kwantów przy wysokich energiach, co z czasem pozwoli na rozbudowanie współczesnych teorii fizycznych opisujących strukturę materii" - wyjaśnia dr Pawłowski.

    Źródło:
    PAP - Nauka w Polsce

    Czy wiesz ĹĽe...? (beta)
    Akcelerator zderzeniowy - urządzenie rozpędzające cząstki elementarne w przeciwnych kierunkach w dwóch tunelach, by zderzyły się i zużyły prawie całą porcję energii kinetycznej na wytworzenie nowych cząstek. Do najważniejszych działających należy Wielki Zderzacz Hadronów w CERN. Synchrotron – szczególny typ akceleratora cyklicznego, w którym cząstki są przyspieszane w polu elektrycznym wzbudzanym w szczelinach rezonatorów synchronicznie do czasu ich obiegu. W synchrotronie, tak jak w każdym cyklotronie (akceleratorze cyklicznym) przyspieszane cząstki krążą w polu magnetycznym. W miarę wzrostu energii przyspieszanych cząstek, pole magnetyczne jest zwiększane, by zachować stały promień obiegu cząstek. TOTEM (ang. TOTal Elastic and diffractive cross section Measurement) – jeden z sześciu detektorów przy wybudowanym w CERN-ie Wielkim Zderzaczu Hadronów (LHC).

    ALICE (ang. A Large Ion Collider Experiment) – jeden z sześciu detektorów przy wybudowanym w CERN-ie Wielkim Zderzaczu Hadronów (LHC). LHC@home - projekt przetwarzania rozproszonego platformy BOINC. Jego celem jest umożliwienie dokładnej kalibracji akceleratora cząstek elementarnych, Large Hadron Collider (LHC), budowanego przez CERN w Genewie.

    Kosmotron, to popularna nazwa synchrotronu protonowego, czyli akceleratora cząstek, zbudowanego w Brookhaven National Laboratory (Long Island, USA) w roku 1948. Pełną energię przyspieszanych cząstek uzyskał w 1953 roku, pracował do 1968 roku. Był pierwszym akceleratorem, który przyspieszał protony do energii 3 GeV. Nazwa nawiązująca do kosmosu wzięła się stąd, że urządzenie to dało jako pierwsze możliwość przeprowadzania i badania reakcji jądrowych wywołanych przez cząstki o energiach zbliżonych do energii pierwotnego promieniowania kosmicznego. Protony o tak dużej energii zderzane z tarczą wytwarzały mezony, które wcześniej obserwowano tylko w rozpadach wywołanych promieniowaniem kosmicznym. Europejska Organizacja Badań Jądrowych CERN (fr. Organisation Européenne pour la Recherche Nucléaire) – ośrodek naukowo-badawczy położony na północno-zachodnich przedmieściach Genewy na granicy Szwajcarii i Francji, pomiędzy Jeziorem Genewskim, a górskim pasmem Jury. Obecnie do organizacji należy dwadzieścia państw. CERN zatrudnia 2600 stałych pracowników oraz około 8000 naukowców i inżynierów reprezentujących ponad 500 instytucji naukowych z całego świata. Najważniejszym narzędziem ich pracy jest największy na świecie akcelerator cząstekWielki Zderzacz Hadronów.

    Akcelerator plazmowy jest urządzeniem do przyspieszania naładowanych cząstek, takich jak elektrony, pozytrony i jony, przy wykorzystaniu pola elektrycznego w powiązaniu z falą wytworzoną w plazmie elektronowej. Fala tworzona jest na drodze krótkiego laserowego impulsu światła lub za pomocą impulsu elektronowego przez plazmę. Technika rokuje możliwości budowy akceleratorów cząstek o bardzo dużej wydajności oraz dużo mniejszych rozmiarach, w porównaniu do konwencjonalnych rozwiązań i związanych z nimi kosztów. Obecna wersje eksperymentalne urządzeń wykazują gradient przyspieszenia kilka razy większy niż współcześnie używane akceleratory. Na przykład eksperymentalne urządzenie w Lawrence Berkeley National Laboratory przyspiesza elektrony do 1 GeV na odcinku 3.3 cm, podczas gdy SLAC (Stanford Linear Accelerator Center) konwencjonalny akcelerator potrzebuje 64 m, aby uzyskać tą samą energię. Podczas ostatnich eksperymentów dokonanych przez zespół SLAC udało się przy wykorzystaniu akceleratora plazmowego typu PWFA osiągnąć energię 42 GeV na odcinku 85 cm. Analizator elektrostatyczny - urządzenie służące do wydzielania z wiązki cząstek naładowanych wiązki o określonej energii cząstek. Zwykle umieszczany jest między wylotem rury akceleratora a tarczą. Analizator tworzą dwie płytki kondensatora wygięte w łuk. Przez taki zakrzywiony kondensator przelatują tylko cząstki dla których siła pola elektrycznego w kondensatorze jest siłą odśrodkową. Przy określonym promieniu łuku kondensatora, energię wyjściowej wiązki analizatora (energię cząstek, które mają przechodzić przez analizator) można regulować natężeniem pola elektrycznego:

    Akcelerator wstrzykujący (inżektor) – akcelerator służący do wstępnego rozpędzania cząstek na potrzeby akceleratorów wysokich energii.

    LHCb (skrót ang. "Large Hadron Collider beauty") – detektor cząstek elementarnych przy genewskim Wielkim Zderzaczu Hadronów (LHC) w CERN.

    Cyklotron izochroniczny (akcelerator z azymutalną modulacją pola) — cyklotron skonstruowany tak, aby czas jednego obiegu rozpędzanych cząstek był stały (stąd nazwa izochroniczny) pomimo wzrostu masy cząstki wywołanej efektami relatywistycznymi. Efekty te występują przy rozpędzaniu cząstek do prędkości porównywalnych z prędkością światła. CMS (ang. Compact Muon Solenoid) – detektor przy wybudowanym w CERN-ie Wielkim Zderzaczu Hadronów (LHC), który posłuży m.in. do obserwacji mionów.

    Pierścień akumulacyjny – kołowy akcelerator cząstek, którego zadaniem jest utrzymywanie krążącej w nim wiązki cząstek przez możliwie długi czas (godziny, czasem dni). Cząstki utrzymywane są zazwyczaj przy stałej energii, często pierścień akumulacyjny rozpędza je najpierw do energii docelowej, a następnie utrzymuje przez dłuższy czas przy tej energii. Akcelerator – urządzenie służące do przyspieszania cząstek elementarnych lub jonów do prędkości bliskich prędkości światła. Cząstki obdarzone ładunkiem elektrycznym są przyspieszane w polu elektrycznym. Do skupienia cząstek w wiązkę oraz do nadania im odpowiedniego kierunku używa się odpowiednio ukształtowanego, w niektórych konstrukcjach także zmieniającego się w czasie, pola magnetycznego lub elektrycznego.

    Bozon Higgsa (higson) – cząstka elementarna, której istnienie jest postulowane przez model standardowy, nazwana nazwiskiem Petera Higgsa. 4 lipca 2012 ogłoszone zostało odkrycie nowej cząstki elementarnej przez eksperymenty ATLAS i CMS, prowadzone przy Wielkim Zderzaczu Hadronów w CERNie. Wyniki ogłoszone 4 lipca zostały potwierdzone przez rezultaty kolejnych eksperymentów, publikowane w ciągu następnego roku. Masa odkrytej cząstki, wykrycie jej w oczekiwanych kanałach rozpadu oraz jej właściwości stanowiły mocne potwierdzenie, że jest to długo poszukiwany bozon Higgsa. W kwietniu zespoły pracujące przy detektorach CMS i ATLAS ostatecznie stwierdziły, że cząstka ta jest bozonem Higgsa.

    Dodano: 27.01.2010. 19:14  


    Najnowsze