• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Telekomunikacja kwantowa

    10.12.2016. 16:27
    opublikowane przez: Redakcja

    Kwantowy internet oraz hybrydowe komputery kwantowe, zbudowane z podsystemów pracujących dzięki różnym zjawiskom fizycznym, przestają być mrzonką fantastów. Na łamach prestiżowego czasopisma „Nature Photonics” fizycy z Wydziału Fizyki Uniwersytetu Warszawskiego (FUW) i Uniwersytetu w Oksfordzie (UO) właśnie zaprezentowali kluczowy element takich systemów: elektrooptyczny przyrząd pozwalający w kontrolowany sposób modyfikować cechy pojedynczych fotonów. W przeciwieństwie do dotychczasowych, laboratoryjnych konstrukcji, nowe urządzenie pracuje z nieosiągalną dotychczas wydajnością, jest przy tym stabilne, niezawodne i kompaktowe. 

    Polsko-brytyjski zespół fizyków skonstruował i przetestował kompaktowy, wydajny konwerter, zdolny zmieniać cechy kwantowe pojedynczych fotonów. Nowe urządzenie powinno ułatwić budowę złożonych komputerów kwantowych, a w przyszłości może stać się ważnym elementem rozległych sieci – kwantowych następców dzisiejszego Internetu.

    Zbudowanie wydajnego przyrządu do kwantowego modyfikowania pojedynczych fotonów było zadaniem wyjątkowo trudnym z uwagi na fundamentalne różnice między informatyką klasyczną a kwantową.

    Współczesna informatyka polega na przetwarzaniu grup bitów, z których każdy znajduje się w ściśle określonym, doskonale znanym stanie: jest równy albo 0, albo 1. Grupy takich bitów są ciągle przesyłane zarówno między różnymi podzespołami w ramach jednego komputera, jak też między różnymi komputerami w sieci. Obrazowo sytuację tę można porównać z  przekazywaniem z miejsca na miejsce tacy z leżącymi na niej monetami, przy czym każda moneta jest skierowana ku górze albo reszką, albo orzełkiem.

    W informatyce kwantowej sprawy się komplikują. Zjawiskiem leżącym u jej podstaw jest superpozycja stanów. Kwantowy bit – nazywany kubitem – jednocześnie znajduje się i w stanie 0, i w stanie 1. W ramach użytej przed chwilą analogii odpowiadałoby to sytuacji, gdy moneta wiruje na krawędzi. O kwantowym przetwarzaniu informacji można mówić tak długo, jak długo w trakcie wszystkich operacji udaje się utrzymać superpozycję stanów – a więc jak długo przy przekazywaniu tacy nie wytrąca się ze stanu wirowania żadnej monety.

    „W ostatnich latach fizycy opanowali sztukę generowania impulsów świetlnych o konkretnej długości fali czy polaryzacji, składających się z pojedynczego kwantu – czyli wzbudzenia – pola elektromagnetycznego. Dziś potrafimy więc wytwarzać dokładnie takie kwantowe 'wirujące monety', jakie chcemy”, mówi dr Michał Karpiński z Instytutu Fizyki Doświadczalnej FUW, jeden ze współautorów publikacji. „Ale apetyt rośnie w miarę jedzenia! Skoro mamy już pojedyncze kwanty światła o zadanych cechach, fajnie byłoby móc z tymi cechami coś zrobić. Zadanie brzmi więc mniej więcej tak: masz wirującą srebrną monetę, prześlij ją z miejsca na miejsce, ale po drodze szybko i dokładnie zamień ją na złotą, naturalnie nie wytrącając jej z wirowania. Od razu widać, że problem wcale nie jest trywialny”.

    Dotychczasowe metody modyfikowania pojedynczych fotonów korzystały ze zjawisk optyki nieliniowej. W praktyce sprowadzały się do prób wymuszania oddziaływania między pojedynczym fotonem a bardzo silną, pompującą wiązką światła. O tym, czy poddawany operacji foton zostanie zmodyfikowany, decydował czysty przypadek. Ponadto rozproszone światło wiązki pompującej mogło tu zanieczyścić strumień pojedynczych fotonów. Przy budowie nowego przyrządu grupa z FUW i UO postanowiła więc skorzystać z innego zjawiska fizycznego: efektu elektrooptycznego, występującego w niektórych kryształach. Pozwala on zmieniać współczynnik załąmania światła w krysztale – tym silniej, im silniejsze jest przyłożone do niego zewnętrzne pole elektryczne (i bez wprowadzania jakichkolwiek dodatkowych fotonów!).

    „To dość zaskakujące, że do modyfikowania cech kwantowych pojedynczych fotonów możemy z powodzeniem używać technik bardzo podobnych do stosowanych w standardowej telekomunikacji światłowodowej", komentuje dr Karpiński.

    Za pomocą nowego urządzenia naukowcy – nie niszcząc superpozycji! – sześciokrotnie wydłużyli czas trwania impulsu jednofotonowego, co automatycznie wiązało się z zawężeniem jego widma, czyli spektrum kolorów. Szczególnie ważny jest tu fakt, że całą operację udało się zrealizować przy zachowaniu bardzo dużej wydajności. Dotychczasowe konwertery działały tylko w warunkach laboratoryjnych i były w stanie zmodyfikować zaledwie jeden foton na kilkadziesiąt. Tymczasem nowy przyrząd przy zachowaniu niskiego poziomu szumów pracuje z wydajnością przekraczającą 30%, większą nawet 200-krotnie w stosunku do niektórych dotychczasowych rozwiązań.

    „W istocie przetwarzamy każdy foton wlatujący do kryształu. Wydajność nie jest stuprocentowa nie z uwagi na fizykę zjawiska, ale z powodu trudnych do uniknięcia strat o charakterze czysto technicznym, pojawiających się na przykład przy wprowadzaniu i wyprowadzaniu światła do i ze światłowodów”, wyjaśnia doktorant Michał Jachura (FUW).

    Nowy konwerter jest nie tylko wydajny i niskoszumny, ale także stabilny i kompaktowy: urządzenie można zamknąć w pudełku o rozmiarach kilkunastocentymetrowych, łatwym do zainstalowania na światłowodzie przesyłającym pojedyncze fotony. Takie urządzenie pozwala realistycznie myśleć o budowie np. hybrydowego komputera kwantowego, którego poszczególne podzespoły przetwarzałyby informację kwantowo z użyciem różnych zjawisk fizycznych. Obecnie komputery kwantowe próbuje się budować z pułapkowanych jonów, spinów elektronowych w diamencie, kropek kwantowych, nadprzewodzących obwodów elektrycznych, czy ultrachłodnych chmur atomowych. Każdy taki układ oddziałuje ze światłem o innych właściwościach, co w praktyce oznaczało brak możliwości optycznego przekazywania informacji kwantowej między układami. Tymczasem nowy konwerter może wydajnie przekształcać jednofotonowe impulsy świetlne kompatybilne z jednym układem w impulsy kompatybilne z drugim. Przed naukowcami pojawia się więc realna droga do budowania sieci kwantowych, zarówno niewielkich, które mogą tworzyć pojedynczy komputer kwantowy (lub tylko jego podzespół), jak i rozległych, umożliwiających całkowicie bezpieczne przesyłanie danych między komputerami kwantowymi w różnych miejscach świata.

    Część eksperymentalną badań zrealizowano na Wydziale Fizyki Uniwersytetu Oksfordzkiego, w grupie badawczej kierowanej przez dr. Briana J. Smitha, gdzie dr Karpiński przebywał na stażu podoktorskim w ramach prestiżowego grantu europejskiego imienia Marii Skłodowskiej-Curie. Po stronie polskiej badania sfinansowano z grantów Narodowego Centrum Nauki i 7. Programu Ramowego Unii Europejskiej.

    Fizyka i astronomia na Uniwersytecie Warszawskim pojawiły się w 1816 roku w ramach ówczesnego Wydziału Filozofii. W roku 1825 powstało Obserwatorium Astronomiczne. Obecnie w skład Wydziału Fizyki UW wchodzą Instytuty: Fizyki Doświadczalnej, Fizyki Teoretycznej, Geofizyki, Katedra Metod Matematycznych oraz Obserwatorium Astronomiczne. Badania pokrywają niemal wszystkie dziedziny współczesnej fizyki, w skalach od kwantowej do kosmologicznej. Kadra naukowo-dydaktyczna Wydziału składa się z ok. 200 nauczycieli akademickich, wśród których jest 88 pracowników z tytułem profesora. Na Wydziale Fizyki UW studiuje ok. 1000 studentów i ponad 170 doktorantów.

    PUBLIKACJE NAUKOWE:

    „Bandwidth manipulation of quantum light by an electro-optic time lens”; M. Karpiński, M. Jachura, L. J. Wright, B. J. Smith; Nature Photonics 2016; DOI: 10.1038/nphoton.2016.228


    Czy wiesz że...? (wersja beta)
    Dariusz Wasik – polski fizyk, doktor habilitowany, profesor UW, były prodziekan ds. studenckich Wydziału Fizyki UW, obecny kierownik Studium Doktoranckiego. Pracuje w Zakładzie Fizyki Ciała Stałego Instytutu Fizyki Doświadczalnej Wydziału Fizyki Uniwersytetu Warszawskiego. Artur Ekert (ur. 19 września 1961 we Wrocławiu) – fizyk prowadzący badania w zakresie podstaw mechaniki kwantowej oraz kwantowego przetwarzania informacji. Obecnie zajmuje on stanowiska profesora fizyki kwantowej na wydziale Matematyki Uniwersytetu Oksfordzkiego a także profesora honorowego Lee Kong Chian (Lee Kong Chian Centennial Professor) na Narodowym Uniwersytecie Singapuru oraz dyrektora Centrum Technologii Kwantowych działającego w ramach tego uniwersytetu. Harald Weinfurter (ur. 14 maja 1960 w Steyr) – profesor fizyki w Uniwersytetecie Ludwiga Maximiliana (niem. Ludwig-Maximilians-Universität München, LMU, Uniwersytet Monachijski). Specjalista w dziedzinie eksperymentów dotyczących podstaw mechaniki kwantowej, a w szczególności: kwantowej interferometrii ze skorelowanymi fotonami, kwantowego splątania, nierówności Bella, kwantowej komunikacji i przetwarzania informacji, kwantowej kryptografii i metrologii.

    W optyce emisja wymuszona (stymulowana, indukowana) – proces emisji fotonów przez materię w wyniku oddziaływania z fotonem inicjującym. Warunkiem do tego, aby emisja wymuszona nastąpiła, jest równość energii fotonu z energią wzbudzenia atomu. Foton inicjujący emisję nie jest pochłaniany przez materię – pełni tylko rolę wyzwalającą proces. Foton emitowany przez atom ma częstotliwość (a więc również energię), fazę i polaryzację taką samą jak foton wywołujący emisję. Kierunek ruchu obu fotonów również jest ten sam. Światło złożone z takich identycznych fotonów nazywa się światłem spójnym. Zjawisko to jest podstawą działania laserów. Jerzy Ginter (ur. 1935) – polski fizyk, prof. dr hab., autor licznych podręczników do fizyki. Były pracownik Zakładu Fizyki Ciała Stałego, Instytutu Fizyki Doświadczalnej Uniwersytetu Warszawskiego. Tematem jego pracy jest dydaktyka fizyki oraz fizyka ciała stałego.

    Komputer optyczny (lub komputer fotoniczny) to hipotetyczne urządzenie wykorzystujące fotony zamiast prądu elektrycznego do przeprowadzania obliczeń. Współcześnie dane przetwarza się za pomocą urządzeń elektronicznych, które zużywają energię na pokonywanie oporu elektrycznego przewodników. Do przesyłania danych wykorzystuje się światłowody, które są o wiele efektywniejsze od przewodów elektrycznych. W sieciach komputerowych pakiety muszą być jednak rutowane do odpowiednich odbiorców, co wymaga wielokrotnego przekształcania danych na postać elektryczną i z powrotem na światło. Każda taka operacja powoduje straty energii i spowalnia komunikację. Wprowadzenie komputerów optycznych wyeliminowałoby te przeszkody. Pole elektromagnetyczne – pole fizyczne, stan przestrzeni, w której na obiekt fizyczny mający ładunek elektryczny działają siły o naturze elektromagnetycznej. Pole elektromagnetyczne jest układem dwóch pól: pola elektrycznego i pola magnetycznego. Pola te są wzajemnie związane, a postrzeganie ich zależy też od obserwatora, wzajemną relację pól opisują równania Maxwella. Własności pola elektromagnetycznego, jego oddziaływanie z materią bada dział fizyki zwany elektrodynamiką. W mechanice kwantowej pole elektromagnetyczne jest postrzegane jako wirtualne fotony.

    Widmo absorpcyjne – widmo, które powstaje podczas przechodzenia promieniowania elektromagnetycznego przez chłonny ośrodek absorbujący promieniowanie o określonych długościach. Można zarejestrować przy użyciu metod spektroskopii. Graficznie ma postać widma ciągłego z ciemnymi liniami (dla gazowych pierwiastków). Występowanie widma absorpcyjnego jest spowodowane pochłanianiem przez substancję fotonów tylko o określonych długościach fali – takich, które mogą spowodować wzbudzenie atomu lub cząsteczki do stanu dopuszczanego przez prawa mechaniki kwantowej. Zmiany stanu wzbudzenia dotyczą zarówno elektronów jak i oscylacji i rotacji całych cząstek. Bramki kwantowe – proste elementy wykonujące podstawowe obliczenia przeprowadzane przez algorytmy kwantowe. Bramki te stanowią podstawowe operacje realizowane przez komputery kwantowe i służą do przetwarzania informacji kwantowej. Na schematach obwodów kwantowych bramki oznaczane są za pomocą ramek, a w obliczeniach stosowana jest postać macierzy unitarnych.

    Stan splątany – rodzaj skorelowanego stanu kwantowego dwóch lub więcej układów kwantowych. Ma on niemożliwą w fizyce klasycznej cechę polegającą na tym, że stan całego układu jest lepiej określony niż stan jego części. Splątanie kwantowe może dotyczyć funkcja falowej pojedynczej cząstki albo większej ich liczby. Możliwe jest również splątanie kwantowe pomiędzy układami, które nie istnieją w tym samym czasie. Hipersplątanie to stan, w którym splątany jest więcej niż jeden stopień swobody. Splątanie przeważnie jest przykładem zjawiska nielokalnego w mechanice kwantowej, jednak istnieje zarówno splątanie lokalne jak i nielokalne zjawiska niebędące splątaniem. Skala splątania jest wielkością zależną od układu odniesienia, gdyż sama liczbą cząstek w danym obszarze jest zależna od układu odniesienia (zob. np. efekt Unruha).

    Pomiar układu fizycznego wprowadza niezbędne oddziaływanie między przyrządem pomiarowym a układem. Ponieważ materia z natury jest kwantowa, to nie jest możliwe dowolne zmniejszenie tego oddziaływania. Jeżeli np. chcemy zaobserwować jakiś obiekt, to najczulszym "przyrządem pomiarowym" do realizacji tego celu będzie jeden foton. Jeżeli liczba atomów badanego obiektu będzie rzędu 10, to odrzut spowodowany uderzeniem fotonu w obiekt będzie niezauważalny. Więc możemy przyjąć, że obiekt nie doznał żadnego zakłócenia wskutek pomiaru. Natomiast jeżeli w analogiczny sposób chcielibyśmy "zmierzyć" elektron, to rozpatrując standardowe jego rozmiary rzędu 10m wymagają użycia fotonu o długości fali mniejszej od rozmiarów elektronu. Foton o takiej długości fali posiada energię rzędu 108 MeV. Gdyby badany elektron był elektronem atomu wodoru (energia wiązania kilka eV), to zderzenie fotonu z elektronem spowodowałoby w konsekwencji nieograniczony odrzut elektronu. Nie można jednak użyć do pomiaru mniejszej części fotonu ze względu na kwantową naturę pola elektromagnetycznego.

    Dielektryk Hopfielda – w mechanice kwantowej model dielektryka składającego się z kwantowych oscylatorów harmonicznych oddziałujących z modami kwantowego pola elektromagnetycznego. Oddziaływanie kolektywne modów polaryzacji ładunku ze wzbudzeniami próżni, fotonami prowadzi do zaburzenia liniowej relacji dyspersji fotonów oraz stałej dyspersji fal ładunku poprzez uniknięcie przecięcia między dwiema liniami dyspersji polarytonów. Podobnie do fononów akustycznych i optycznych daleko od rezonansu jedna galąź dyspersji zachowuje sie jak fotony a druga jak fale ładunku. Matematycznie dielektryk Hopfielda dla jednego modu wzbudzeń jest równowazny paczce Trojanskiej w przybliżeniu harmonicznym. Model Hopielda dielektryka przewiduje istnienie wiecznie związanych fotonów podobnych do promieniowania Hawkinga wewnątrz materii o gęstości proporcjonalnej do siły sprzężenia pomiędzy polem i materią.

    Dodano: 10.12.2016. 16:27  


    Najnowsze